Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21589, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517538

RESUMO

Soft and compliant ionic electromechanically active polymer actuators (IEAPs) are a promising class of smart materials for biomedical and soft robotics applications. These materials change their shape in response to external stimuli like the electrical signal. This shape-change results solely from the ion flux inside the composite and hence the material can be miniaturized below the centimeter and millimeter levels-something that still poses a challenge for many other conventional actuation mechanisms in soft robotics (e.g., pneumatic, hydraulic, or tendon-based systems). However, the components used to prepare IEAPs are typically not safe for the biological environment, nor is the environment safe for the actuator. Safety concerns and unreliable operation in foreign liquid environments have been some of the main obstacles for the widespread adoption of IEAPs in many areas, e.g., in biomedical applications. Here we show a novel approach to fully encapsulate IEAP actuators with the biocompatible block copolymer SIBS (poly(styrene-block-isobutylene-block-styrene)) dissolved in block-selective solvents. Reduction in the bending amplitude due to the added passive layers, a common negative side-effect of encapsulating IEAPs, was not observed in this work. In conclusion, the encapsulated actuator is steered through a tortuous vasculature mock-up filled with a viscous buffer solution mimicking biological fluids.


Assuntos
Robótica , Materiais Inteligentes , Polímeros , Solventes , Íons , Estirenos
2.
J Vis Exp ; (158)2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32391818

RESUMO

Ionic electromechanically active capacitive laminates are a type of smart material that move in response to electrical stimulation. Due to the soft, compliant and biomimetic nature of this deformation, actuators made of the laminate have received increasing interest in soft robotics and (bio)medical applications. However, methods to easily fabricate the active material in large (even industrial) quantities and with a high batch-to-batch and within-batch repeatability are needed to transfer the knowledge from laboratory to industry. This protocol describes a simple, industrially scalable and reproducible method for the fabrication of ionic carbon-based electromechanically active capacitive laminates and the preparation of actuators made thereof. The inclusion of a passive and chemically inert (insoluble) middle layer (e.g., a textile-reinforced polymer network or microporous Teflon) distinguishes the method from others. The protocol is divided into five steps: membrane preparation, electrode preparation, current collector attachment, cutting and shaping, and actuation. Following the protocol results in an active material that can, for example, compliantly grasp and hold a randomly shaped object as demonstrated in the article.


Assuntos
Biomimética , Carvão Vegetal/química , Eletrodos , Polímeros/química , Robótica , Condutividade Elétrica , Íons
3.
Molecules ; 25(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272688

RESUMO

Mixing ionic liquids is a suitable strategy to tailor properties, e.g., to reduce melting points. The present study aims to widen the application range of low-toxic choline-based ionic liquids by studying eight binary phase diagrams of six different choline carboxylates. Five of them show eutectic points with melting points dropping by 13 to 45 °C. The eutectic mixtures of choline acetate and choline 2-methylbutarate were found to melt at 45 °C, which represents a remarkable melting point depression compared to the pure compounds with melting points of 81 (choline acetate) and 90 °C (choline 2-methylbutarate), respectively. Besides melting points, the thermal stabilities of the choline salt mixtures were investigated to define the thermal operation range for potential practical applications of these mixtures. Typical decomposition temperatures were found between 165 and 207 °C, with choline lactate exhibiting the highest thermal stability.


Assuntos
Ânions/química , Colina/química , Líquidos Iônicos/química , Ácidos Carboxílicos/química , Temperatura de Transição
4.
Langmuir ; 32(34): 8613-22, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27463531

RESUMO

The synthesis of ionic-liquid-modified nanomaterials has attracted much attention recently. In this study we explore the potential to prepare such systems in an ultraclean fashion by physical vapor codeposition (PVCD). We codeposit metallic cobalt and the room-temperature ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [C1C2Im][OTf] simultaneously onto a Pd(111) surface at 100 K. This process is performed under ultrahigh-vacuum (UHV) conditions in the presence of CO, or in the presence of O2 and CO. We use time-resolved (TR) and temperature-programmed (TP) infrared reflection absorption spectroscopy (IRAS) to investigate the formation and stability of the IL-modified Co deposits in situ during the PVD-based synthesis. CO is used as a probe molecule to monitor the growth. After initial growth of flat Co films on Pd(111), multilayers of Co nanoparticles (NPs) are formed. Characteristic shifts and intensity changes are observed in the vibrational bands of both CO and the IL, which originate from the electric field at the IL/Co interface (Stark effect) and from specific adsorption of the [OTf](-) anion. These observations indicate that the Co aggregates are stabilized by mixed adsorbate shells consisting of CO and [OTf](-). The CO coverage on the Co particle decreases with increasing temperature, but some CO is preserved up to the desorption temperature of the IL (370 K). Further, the IL shell suppresses the oxidation of the Co NPs if oxygen is introduced in the PVCD process. Only chemisorbed oxygen is formed at oxygen partial pressures that swiftly lead to formation of Co3O4 in the absence of the IL (5 × 10(-6) mbar O2). This chemisorbed oxygen is found to destabilize the CO ligand shell. The oxidation of Co is not suppressed if IL and Co are deposited sequentially under otherwise identical conditions. In this case we observe the formation of fully oxidized cobalt oxide particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA