Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Immunol ; 257: 109815, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37898413

RESUMO

We report the fatal case of a 20-year-old woman with refractory adult-onset Still's disease (AOSD) accompanied by fulminant macrophage activation syndrome (MAS) and atypical hemolytic uremic syndrome (aHUS). Anakinra and tocilizumab temporarily controlled AOSD. In 2021, she presented to ICU with generalized tonic-clonic seizure, lymphocytic aseptic meningitis, and acute kidney injury. Despite hemodialysis and methylprednisolone, she developed another seizure, MAS, and disseminated intravascular coagulation (DIC). Following brief control, MAS flares -reflected by increased plasma CXCL9 and CXCL10- re-emerged and were controlled through dexamethasone, etoposide, cyclosporin and tofacitinib. No mutations were detected in haemophagocytic lymphohistiocytosis (HLH)-associated genes, nor in genes associated with periodic fever syndromes. Post-mortem genetic testing revealed loss-of-function biallelic deletions in complement factor H-related proteins (CFHR) genes, predisposing aHUS. This case underscores the importance of prompt genetic assessment of complement-encoding alleles, in addition to HLH-related genes, in patients with severe AOSD with recurrent MAS and features of thrombotic microangiopathy (TMA).


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Linfo-Histiocitose Hemofagocítica , Síndrome de Ativação Macrofágica , Doença de Still de Início Tardio , Adulto , Feminino , Humanos , Adulto Jovem , Síndrome de Ativação Macrofágica/genética , Doença de Still de Início Tardio/complicações , Doença de Still de Início Tardio/genética , Síndrome Hemolítico-Urêmica Atípica/genética , Linfo-Histiocitose Hemofagocítica/genética , Ciclosporina/uso terapêutico
2.
Cell Mol Life Sci ; 80(8): 234, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505242

RESUMO

The human chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is involved in several homeostatic processes and pathologies through interaction with its cognate G protein-coupled receptor CXCR4. Recent research has shown that CXCL12 is present in the lungs and circulation of patients with coronavirus disease 2019 (COVID-19). However, the question whether the detected CXCL12 is bioactive was not addressed. Indeed, the activity of CXCL12 is regulated by NH2- and COOH-terminal post-translational proteolysis, which significantly impairs its biological activity. The aim of the present study was to characterize proteolytic processing of CXCL12 in broncho-alveolar lavage (BAL) fluid and blood plasma samples from critically ill COVID-19 patients. Therefore, we optimized immunosorbent tandem mass spectrometry proteoform analysis (ISTAMPA) for detection of CXCL12 proteoforms. In patient samples, this approach uncovered that CXCL12 is rapidly processed by site-specific NH2- and COOH-terminal proteolysis and ultimately degraded. This proteolytic inactivation occurred more rapidly in COVID-19 plasma than in COVID-19 BAL fluids, whereas BAL fluid samples from stable lung transplantation patients and the non-affected lung of lung cancer patients (control groups) hardly induced any processing of CXCL12. In COVID-19 BAL fluids with high proteolytic activity, processing occurred exclusively NH2-terminally and was predominantly mediated by neutrophil elastase. In low proteolytic activity BAL fluid and plasma samples, NH2- and COOH-terminal proteolysis by CD26 and carboxypeptidases were observed. Finally, protease inhibitors already approved for clinical use such as sitagliptin and sivelestat prevented CXCL12 processing and may therefore be of pharmacological interest to prolong CXCL12 half-life and biological activity in vivo.


Assuntos
COVID-19 , Humanos , Proteólise , Quimiocina CXCL12/metabolismo , Peptídeo Hidrolases , Pulmão/metabolismo , Receptores CXCR4 , Processamento de Proteína Pós-Traducional
3.
Respir Res ; 23(1): 359, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528664

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by recurrent airway infection and inflammation. There is no cure for PCD and to date there are no specific treatments available. Neutrophils are a crucial part of the immune system and are known to be dysfunctional in many inflammatory diseases. So far, the role of the neutrophils in PCD airways is largely unknown. The purpose of this study was to investigate the phenotype and function of airway neutrophils in PCD, and compare them to blood neutrophils. METHODS: Paired peripheral blood and spontaneously expectorated sputum samples from patients with PCD (n = 32) and a control group of patients with non-PCD, non-cystic fibrosis bronchiectasis (n = 5) were collected. The expression of neutrophil-specific surface receptors was determined by flow cytometry. Neutrophil function was assessed by measuring the extent of actin polymerization, production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs) in response to activating stimuli. RESULTS: Sputum neutrophils displayed a highly activated phenotype and were unresponsive to stimuli that would normally induce ROS production, actin polymerization and the expulsion of NETs. In addition, PCD sputum displayed high activity of neutrophil elastase, and impaired the efferocytosis by healthy donor macrophages. CONCLUSIONS: Sputum neutrophils in PCD are dysfunctional and likely contribute to ongoing inflammation in PCD airways. Further research should focus on anti-inflammatory therapies and stimulation of efferocytosis as a strategy to treat PCD.


Assuntos
Transtornos da Motilidade Ciliar , Neutrófilos , Humanos , Neutrófilos/metabolismo , Escarro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Actinas/metabolismo , Inflamação/metabolismo
5.
Front Allergy ; 3: 992195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110144

RESUMO

Background: Occupational allergy has been described in employees working in contact with mealworms in pet stores, live fish bait or infested stored grains and recently, in mealworm farming for animal feed and human consumption. Mealworm allergens linked to occupational allergy are troponin C, cockroach-like allergen, tropomyosin, arginine kinase, early-staged encapsulation inducing- and larval cuticle proteins. Objective: We report a case of occupational mealworm allergy and studied the culprit component. Methods: Diagnosis was done by skin prick, specific IgE, basophil activation and lung function testing. Allergen purification was performed by anion-exchange chromatography and immunoblotting with patient IgE. Allergens were identified by in-gel trypsin digest and tandem mass spectrometry. Allergenicity and specificity further confirmed by IgE inhibition and passive basophil activation experiments. Results: We describe a new case of occupational mealworm allergy in a laboratory worker, with sensitization to different developmental stages and derivates of the mealworm. In basophil activation tests, the majority of patient's basophils (69%-91%) degranulated upon stimulation with the lowest concentration of mealworm extracts (0.16 µg/ml). Despite strong sensitization to mites, the patient did not show cross-reactivity to other insects. We were able to identify alpha-amylase as the main allergen and through inhibition experiments, we demonstrated that low amounts (0.1 µg/ml) of this allergen could strongly inhibit mealworm specific IgE by 79.1%. Moreover, passive BAT experiments demonstrated the IgE-alpha-amylase interaction to be functional, inducing up to 25.5% degranulation in healthy donor basophils. Conclusion: Alpha-amylase can be identified as the responsible allergen in this specific case of occupational mealworm allergy.

6.
Front Immunol ; 13: 820058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222394

RESUMO

Neutrophils are the most abundant leukocytes in human blood and the first cells responding to infection and injury. Due to their limited ex vivo lifespan and the impossibility to cryopreserve or expand them in vitro, neutrophils need to be purified from fresh blood for immediate use in experiments. Importantly, neutrophil purification methods may artificially modify the phenotype and functional characteristics of the isolated cells. The aim of this study was to expose the effects of 'classical' density-gradient purification versus the more expensive but faster immunomagnetic isolation on neutrophil phenotype and functionality. We found that in the absence of inflammatory stimuli, density-gradient-derived neutrophils showed increased polarization responses as well as enhanced release of reactive oxygen species (ROS), neutrophil extracellular traps (NETs) and granular proteins compared to cells derived from immunomagnetic isolation, which yields mostly quiescent neutrophils. Upon exposure to pro-inflammatory mediators, immunomagnetic isolation-derived neutrophils were significantly more responsive in polarization, ROS production, phagocytosis, NETosis and degranulation assays, in comparison to density-gradient-derived cells. We found no difference in chemotactic response in Multiscreen and under-agarose migration assays, but Boyden assays showed reduced chemotaxis of immunomagnetic isolation-derived neutrophils. Finally, we confirmed that density-gradient purification induces artificial activation of neutrophils, evidenced by e.g. higher expression of CD66b, formyl peptide receptor 1 (FPR1) and CD35, and the appearance of a separate neutrophil population expressing surface molecules atypical for neutrophils (e.g. CXCR3, MHC-II and CD14). Based on these results, we recommend using immunomagnetic separation of neutrophils for studying neutrophil polarization, phagocytosis, ROS production, degranulation and NETosis, whereas for Boyden chemotaxis assays, the density-gradient purification is more suitable.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Tecnologia
7.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680238

RESUMO

Growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF) are important angiogenesis-mediating factors. They exert their effects not only through their respective receptor tyrosine kinases (RTKs), but they also require molecular pairing with heparan sulfate proteoglycans (HSPGs). Angiogenic growth factors and their signaling pathways are commonly targeted in current anti-angiogenic cancer therapies but have unfortunately insufficient impact on patient survival. Considering their obvious role in pathological angiogenesis, HS-targeting drugs have become an appealing new strategy. Therefore, we aimed to reduce angiogenesis through interference with growth factor-HS binding and downstream signaling using a CXCL9-derived peptide with a high affinity for glycosaminoglycans (GAGs), CXCL9(74-103). We showed that CXCL9(74-103) reduced EGF-, VEGF165- and FGF-2-mediated angiogenic processes in vitro, such as endothelial cell proliferation, chemotaxis, adhesion and sprouting, without exerting cell toxicity. CXCL9(74-103) interfered with growth factor signaling in diverse ways, e.g., by diminishing VEGF165 binding to HS and by direct association with FGF-2. The dependency of CXCL9(74-103) on HS for binding to HMVECs and for exerting its anti-angiogenic activity was also demonstrated. In vivo, CXCL9(74-103) attenuated neovascularization in the Matrigel plug assay, the corneal cauterization assay and in MDA-MB-231 breast cancer xenografts. Additionally, CXCL9(74-103) reduced vascular leakage in the retina of diabetic rats. In contrast, CXCL9(86-103), a peptide with low GAG affinity, showed no overall anti-angiogenic activity. Altogether, our results indicate that CXCL9(74-103) reduces angiogenesis by interfering with multiple HS-dependent growth factor signaling pathways.

8.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201048

RESUMO

The airways of patients with primary ciliary dyskinesia (PCD) contain persistently elevated neutrophil numbers and CXCL8 levels. Despite their abundance, neutrophils fail to clear the airways from bacterial infections. We investigated whether neutrophil functions are altered in patients with PCD. Neutrophils from patients and healthy controls (HC) were isolated from peripheral blood and exposed to various bacterial stimuli or cytokines. Neutrophils from patients with PCD were less responsive to low levels of fMLF in three different chemotaxis assays (p < 0.05), but expression of the fMLF receptors was unaltered. PCD neutrophils showed normal phagocytic function and expression of adhesion molecules. However, PCD neutrophils produced less reactive oxygen species upon stimulation with bacterial products or cytokines compared to HC neutrophils (p < 0.05). Finally, the capacity to release DNA, as observed during neutrophil extracellular trap formation, seemed to be reduced in patients with PCD compared to HC (p = 0.066). These results suggest that peripheral blood neutrophils from patients with PCD, in contrast to those of patients with cystic fibrosis or COPD, do not show features of over-activation, neither on baseline nor after stimulation. If these findings extend to lung-resident neutrophils, the reduced neutrophil activity could possibly contribute to the recurrent respiratory infections in patients with PCD.


Assuntos
Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Quimiotaxia , Transtornos da Motilidade Ciliar/patologia , Citocinas/metabolismo , Neutrófilos/patologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , Transtornos da Motilidade Ciliar/imunologia , Transtornos da Motilidade Ciliar/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/metabolismo , Adulto Jovem
9.
Clin Transl Immunology ; 10(4): e1271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968405

RESUMO

OBJECTIVES: Emerging evidence of dysregulation of the myeloid cell compartment urges investigations on neutrophil characteristics in coronavirus disease 2019 (COVID-19). We isolated neutrophils from the blood of COVID-19 patients receiving general ward care and from patients hospitalised at intensive care units (ICUs) to explore the kinetics of circulating neutrophils and factors important for neutrophil migration and activation. METHODS: Multicolour flow cytometry was exploited for the analysis of neutrophil differentiation and activation markers. Multiplex and ELISA technologies were used for the quantification of protease, protease inhibitor, chemokine and cytokine concentrations in plasma. Neutrophil polarisation responses were evaluated microscopically. Gelatinolytic and metalloproteinase activity in plasma was determined using a fluorogenic substrate. Co-culturing healthy donor neutrophils with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) allowed us to investigate viral replication in neutrophils. RESULTS: Upon ICU admission, patients displayed high plasma concentrations of granulocyte-colony-stimulating factor (G-CSF) and the chemokine CXCL8, accompanied by emergency myelopoiesis as illustrated by high levels of circulating CD10-, immature neutrophils with reduced CXCR2 and C5aR expression. Neutrophil elastase and non-metalloproteinase-derived gelatinolytic activity were increased in plasma from ICU patients. Significantly higher levels of circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) in patients at ICU admission yielded decreased total MMP proteolytic activity in blood. COVID-19 neutrophils were hyper-responsive to CXCL8 and CXCL12 in shape change assays. Finally, SARS-CoV-2 failed to replicate inside human neutrophils. CONCLUSION: Our study provides detailed insights into the kinetics of neutrophil phenotype and function in severe COVID-19 patients, and supports the concept of an increased neutrophil activation state in the circulation.

10.
J Clin Immunol ; 41(5): 1072-1084, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33666778

RESUMO

PURPOSE: Familial Mediterranean Fever (FMF) and Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis (PAAND) are clinically distinct autoinflammatory disorders caused by mutations in the pyrin-encoding gene MEFV. We investigated the transcriptional, phenotypical, and functional characteristics of patient neutrophils to explore their potential role in FMF and PAAND pathophysiology. METHODS: RNA sequencing was performed to discover transcriptional aberrancies. The phenotypical features, degranulation properties, and phagocytic capacity of neutrophils were assessed by flow cytometry. Production of reactive oxygen species (ROS), myeloperoxidase (MPO) release, and chemotactic responses were investigated via chemiluminescence, ELISA, and Boyden chamber assays, respectively. RESULTS: Neutrophils from PAAND and FMF patients showed a partially overlapping, activated gene expression profile with increased expression of S100A8, S100A9, S100A12, IL-4R, CD48, F5, MMP9, and NFKB. Increased MMP9 and S100A8/A9 expression levels were accompanied by high plasma concentrations of the encoded proteins. Phenotypical analysis revealed that neutrophils from FMF patients exhibited an immature character with downregulation of chemoattractant receptors CXCR2, C5aR, and BLTR1 and increased expression of Toll-like receptor 4 (TLR4) and TLR9. PAAND neutrophils displayed an increased random, but reduced CXCL8-induced migration. A tendency for enhanced random migration was observed for FMF neutrophils. PAAND neutrophils showed a moderately but significantly enhanced phagocytic activity as opposed to neutrophils from FMF patients. Neutrophils from both patient groups showed increased MPO release and ROS production. CONCLUSIONS: Neutrophils from patients with FMF and PAAND, carrying different mutations in the MEFV gene, share a pro-inflammatory phenotype yet demonstrate diverse features, underscoring the distinction between both diseases.


Assuntos
Febre Familiar do Mediterrâneo , Inflamação , Neutrófilos/imunologia , Pirina/genética , Dermatopatias , Adulto , Idoso , Calgranulina A/sangue , Calgranulina B/sangue , Citocinas/sangue , Febre Familiar do Mediterrâneo/sangue , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/imunologia , Feminino , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Masculino , Metaloproteinase 9 da Matriz/sangue , Pessoa de Meia-Idade , Peroxidase/imunologia , Fagocitose , Fenótipo , Dermatopatias/sangue , Dermatopatias/genética , Dermatopatias/imunologia , Transcriptoma , Adulto Jovem
11.
Sci Signal ; 14(673)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33688078

RESUMO

The inflammatory human chemokine CXCL5 interacts with the G protein-coupled receptor CXCR2 to induce chemotaxis and activation of neutrophils. CXCL5 also has weak agonist activity toward CXCR1. The N-terminus of CXCL5 can be modified by proteolytic cleavage or deimination of Arg9 to citrulline (Cit), and these modifications can occur separately or together. Here, we chemically synthesized native CXCL5(1-78), truncated CXCL5 [CXCL5(9-78)], and the citrullinated (Cit9) versions and characterized their functions in vitro and in vivo. Compared with full-length CXCL5, N-terminal truncation resulted in enhanced potency to induce G protein signaling and ß-arrestin recruitment through CXCR2, increased CXCL5-initiated internalization of CXCR2, and greater Ca2+ signaling downstream of not only CXCR2 but also CXCR1. Citrullination did not affect the capacity of CXCL5 to activate classical or alternative signaling pathways. Administering the various CXCL5 forms to mice revealed that in addition to neutrophils, CXCL5 exerted chemotactic activity toward monocytes and that this activity was increased by N-terminal truncation. These findings were confirmed by in vitro chemotaxis and Ca2+ signaling assays with primary human CD14+ monocytes and human THP-1 monocytes. In vitro and in vivo analyses suggested that CXCL5 targeted monocytes through CXCR1 and CXCR2. Thus, truncation of the N-terminus makes CXCL5 a more potent chemoattractant for both neutrophils and monocytes that acts through CXCR1 and CXCR2.


Assuntos
Quimiocina CXCL5 , Monócitos , Neutrófilos , Animais , Quimiocina CXCL5/genética , Fatores Quimiotáticos , Humanos , Interleucina-8 , Camundongos , Receptores de Interleucina-8A/genética , Células THP-1
12.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008874

RESUMO

Although glycosaminoglycan (GAG)-protein interactions are important in many physiological and pathological processes, the structural requirements for binding are poorly defined. Starting with GAG-binding peptide CXCL9(74-103), peptides were designed to elucidate the contribution to the GAG-binding affinity of different: (1) GAG-binding motifs (i.e., BBXB and BBBXXB); (2) amino acids in GAG-binding motifs and linker sequences; and (3) numbers of GAG-binding motifs. The affinity of eight chemically synthesized peptides for various GAGs was determined by isothermal fluorescence titration (IFT). Moreover, the binding of peptides to cellular GAGs on Chinese hamster ovary (CHO) cells was assessed using flow cytometry with and without soluble GAGs. The repetition of GAG-binding motifs in the peptides contributed to a higher affinity for heparan sulfate (HS) in the IFT measurements. Furthermore, the presence of Gln residues in both GAG-binding motifs and linker sequences increased the affinity of trimer peptides for low-molecular-weight heparin (LMWH), partially desulfated (ds)LMWH and HS, but not for hyaluronic acid. In addition, the peptides bound to cellular GAGs with differential affinity, and the addition of soluble HS or heparin reduced the binding of CXCL9(74-103) to cellular GAGs. These results indicate that the affinity and specificity of peptides for GAGs can be tuned by adapting their amino acid sequence and their number of GAG-binding motifs.


Assuntos
Heparina de Baixo Peso Molecular/metabolismo , Heparitina Sulfato/metabolismo , Peptídeos/química , Animais , Sítios de Ligação , Células CHO , Cricetulus , Ligação Proteica
13.
J Interferon Cytokine Res ; 40(4): 195-206, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32031878

RESUMO

Chronic hepatitis C virus (HCV) infection accounts for a large proportion of hepatic fibrosis and carcinoma cases observed worldwide. Mechanisms involved in HCV-induced hepatic injury have yet to be fully elucidated. Of particular interest is the capacity of HCV to regulate inflammatory responses. Here, we reveal modulation of cytokine activity by the HCV proteins non-structural protein 3 (NS3), glycoprotein E2, and core protein for their ability to induce chemokine expression in various liver bystander cells. Chemokines sustain chronic liver inflammation and relay multiple fibrogenic effects. CCL2, CCL3, CCL20, CXCL8, and CXCL10 were differentially expressed after treatment of monocytes, fibroblasts, or liver sinusoidal microvascular endothelial cells (LSECs) with HCV proteins. In comparison to NS3 and glycoprotein E2, core protein was a stronger inducer of chemokines in liver bystander cells. Interferon-γ (IFN-γ) and interleukin-1ß (IL-1ß) synergized with core protein to induce CCL2, CCL20, CXCL8, or CXCL10 in fibroblasts or LSECs. These findings reveal new mechanisms of hepatic injury caused by HCV.


Assuntos
Quimiocinas/metabolismo , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Células Cultivadas , Quimiocinas/genética , Hepacivirus/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia
14.
Clin Exp Allergy ; 48(10): 1333-1344, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29978510

RESUMO

BACKGROUND: To recruit leucocytes to an inflammatory site, chemokine binding to glycosaminoglycans (GAGs) is critical. Therefore, strategies to interfere with this interaction, aiming at the production of anti-inflammatory agents, were developed. These include production of modified chemokines without affinity for G protein-coupled receptors but with enhanced affinity for GAGs. Such modified chemokines compete with functional chemokines for GAG binding, prevent chemokine immobilization and presentation, and inhibit leucocyte migration. In addition to modified chemokines, a GAG-binding peptide consisting of the 30 COOH-terminal residues of CXCL9, that is CXCL9(74-103), inhibited CXCL8- and monosodium urate crystal-induced neutrophil migration. OBJECTIVE: We wanted to explore whether interference with chemokine-GAG interactions by CXCL9(74-103) reduces inflammation in neutrophil-dependent dinitrofluorobenzene-induced contact hypersensitivity. METHODS: For this study, we evaluated several inflammatory parameters, including ear swelling and the levels of chemokines, cytokines, proteases and neutrophils in the ears of dinitrofluorobenzene-induced mice treated with CXCL9(74-103) or buffer. RESULTS: One intravenous injection of CXCL9(74-103), just before painting with dinitrofluorobenzene on the ear, did not affect protein levels of the major murine neutrophil attractant, that is CXCL6, in this contact hypersensitivity model. However, IL-6, CXCL1, CCL2 and matrix metalloproteinase-9 (MMP-9) protein concentrations and peroxidase activity in challenged ears were reduced. In addition, intravenous injection of the CXCL9-derived peptide led to a reduced ear swelling response, indicating that the locally produced chemokines were hindered to attract leucocytes. The inhibiting potential of CXCL9(74-103) was explained by its competition for GAG binding with CXCL1, CXCL6 and CCL3 and inhibition of transendothelial migration of neutrophils to CXCL6. CONCLUSIONS AND CLINICAL RELEVANCE: The CXCL9(74-103) peptide inhibited dinitrofluorobenzene-induced infiltration of neutrophils and neutrophil-dependent inflammation in ears. Therefore, CXCL9(74-103) may be a lead molecule for the development of therapeutic peptides or peptide derivatives that compete with functional chemokines for GAG binding.


Assuntos
Anti-Inflamatórios/farmacologia , Quimiocina CXCL9/química , Dermatite de Contato/etiologia , Dermatite de Contato/metabolismo , Dinitrofluorbenzeno/efeitos adversos , Glicosaminoglicanos/metabolismo , Peptídeos/farmacologia , Animais , Citocinas/metabolismo , Dermatite de Contato/tratamento farmacológico , Feminino , Leucócitos/imunologia , Leucócitos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Ligação Proteica , Pele/imunologia , Pele/metabolismo , Pele/patologia , Migração Transendotelial e Transepitelial
15.
Front Immunol ; 9: 1081, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915572

RESUMO

Serum amyloid A1 (SAA1) is a prototypic acute phase protein, induced to extremely high levels by physical insults, including inflammation and infection. Human SAA and its NH2-terminal part have been studied extensively in the context of amyloidosis. By contrast, little is known about COOH-terminal fragments of SAA. Intact SAA1 chemoattracts leukocytes via the G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPR2). In addition to direct leukocyte activation, SAA1 induces chemokine production by signaling through toll-like receptor 2. We recently discovered that these induced chemokines synergize with intact SAA1 to chemoattract leukocytes in vitro and in vivo. Gelatinase B or matrix metalloproteinase-9 (MMP-9) is also induced by SAA1 during infection and inflammation and processes many substrates in the immune system. We demonstrate here that MMP-9 rapidly cleaves SAA1 at a known consensus sequence that is also present in gelatins. Processing of SAA1 by MMP-9 at an accessible loop between two alpha helices yielded predominantly three COOH-terminal fragments: SAA1(52-104), SAA1(57-104), and SAA1(58-104), with a relative molecular mass of 5,884.4, 5,327.3, and 5,256.3, respectively. To investigate the effect of proteolytic processing on the biological activity of SAA1, we chemically synthesized the COOH-terminal SAA fragments SAA1(52-104) and SAA1(58-104) and the complementary NH2-terminal peptide SAA1(1-51). In contrast to intact SAA1, the synthesized SAA1 peptides did not induce interleukin-8/CXCL8 in monocytes or fibroblasts. Moreover, these fragments possessed no direct chemotactic activity for neutrophils, as observed for intact SAA1. However, comparable to intact SAA1, SAA1(58-104) cooperated with CXCL8 in neutrophil activation and migration, whereas SAA1(1-51) lacked this potentiating activity. This cooperative interaction between the COOH-terminal SAA1 fragment and CXCL8 in neutrophil chemotaxis was mediated by FPR2. Hence, proteolytic cleavage of SAA1 by MMP-9 fine tunes the inflammatory capacity of this acute phase protein in that only the synergistic interactions with chemokines remain to prolong the duration of inflammation.


Assuntos
Quimiotaxia/imunologia , Citocinas/metabolismo , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Células Cultivadas , Fibroblastos , Humanos , Metaloproteinase 9 da Matriz/química , Monócitos/imunologia , Monócitos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Recombinantes , Proteína Amiloide A Sérica/química
16.
J Leukoc Biol ; 98(6): 1049-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26297794

RESUMO

Cell migration depends on the ability of leukocytes to sense an external gradient of chemotactic proteins produced during inflammation. These proteins include chemokines, complement factors, and some acute phase proteins, such as serum amyloid A. Serum amyloid A chemoattracts neutrophils, monocytes, and T lymphocytes via its G protein-coupled receptor formyl peptide receptor 2. We demonstrate that serum amyloid A1α more potently chemoattracts neutrophils in vivo than in vitro. In contrast to CD14(+) monocytes, no rapid (within 2 h) induction of interleukin-8/CXC chemokine ligand 8 or macrophage-inflammatory protein-1α/CC chemokine ligand 3 was observed in purified human neutrophils after stimulation of the cells with serum amyloid A1α or lipopolysaccharide. Moreover, interleukin-8/CXC chemokine ligand 8 induction in monocytes by serum amyloid A1α was mediated by toll-like receptor 2 and was inhibited by association of serum amyloid A1α with high density lipoprotein. This indicates that the potent chemotactic response of neutrophils toward intraperitoneally injected serum amyloid A1α is indirectly enhanced by rapid induction of chemokines in peritoneal cells, synergizing in a paracrine manner with serum amyloid A1α. We observed direct synergy between IL-8/CXC chemokine ligand 8 and serum amyloid A1α, but not lipopolysaccharide, in chemotaxis and shape change assays with neutrophils. Furthermore, the selective CXC chemokine receptor 2 and formyl peptide receptor 2 antagonists, SB225002 and WRW4, respectively, blocked the synergy between IL-8/CXC chemokine ligand 8 and serum amyloid A1α in neutrophil chemotaxis in vitro, indicating that for synergy their corresponding G protein-coupled receptors are required. Additionally, SB225002 significantly inhibited serum amyloid A1α-mediated peritoneal neutrophil influx. Taken together, endogenous (e.g., IL-1ß) and exogenous (e.g., lipopolysaccharide) inflammatory mediators induce primary chemoattractants such as serum amyloid A that synergize in an autocrine (monocyte) or a paracrine (neutrophil) fashion with secondary chemokines induced in stromal cells.


Assuntos
Quimiotaxia de Leucócito/imunologia , Interleucina-8/imunologia , Neutrófilos/imunologia , Comunicação Parácrina/imunologia , Receptores de Formil Peptídeo/imunologia , Receptores de Interleucina-8B/imunologia , Receptores de Lipoxinas/imunologia , Proteína Amiloide A Sérica/imunologia , Receptor 2 Toll-Like/imunologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Feminino , Humanos , Masculino , Comunicação Parácrina/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/antagonistas & inibidores
17.
Eur J Immunol ; 45(1): 101-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25345597

RESUMO

Serum amyloid A (SAA) is an acute phase protein that is upregulated in inflammatory diseases and chemoattracts monocytes, lymphocytes, and granulocytes via its G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPRL1/FPR2). Here, we demonstrated that the SAA1α isoform also chemoattracts monocyte-derived immature dendritic cells (DCs) in the Boyden and µ-slide chemotaxis assay and that its chemotactic activity for monocytes and DCs was indirectly mediated via rapid chemokine induction. Indeed, SAA1 induced significant amounts (≥5 ng/mL) of macrophage inflammatory protein-1α/CC chemokine ligand 3 (MIP-1α/CCL3) and interleukin-8/CXC chemokine ligand 8 (IL-8/CXCL8) in monocytes and DCs in a dose-dependent manner within 3 h. However, SAA1 also directly activated monocytes and DCs for signaling and chemotaxis without chemokine interference. SAA1-induced monocyte migration was nevertheless significantly prevented (60-80% inhibition) in the constant presence of desensitizing exogenous MIP-1α/CCL3, neutralizing anti-MIP-1α/CCL3 antibody, or a combination of CC chemokine receptor 1 (CCR1) and CCR5 antagonists, indicating that this endogenously produced CC chemokine was indirectly contributing to SAA1-mediated chemotaxis. Further, anti-IL-8/CXCL8 antibody neutralized SAA1-induced monocyte migration, suggesting that endogenous IL-8/CXCL8 acted in concert with MIP-1α/CCL3. This explained why SAA1 failed to synergize with exogenously added MIP-1α/CCL3 or stromal cell-derived factor-1α (SDF-1α)/CXCL12 in monocyte and DC chemotaxis. In addition to direct leukocyte activation, SAA1 induces a chemotactic cascade mediated by expression of cooperating chemokines to prolong leukocyte recruitment to the inflammatory site.


Assuntos
Quimiocina CCL3/imunologia , Células Dendríticas/efeitos dos fármacos , Interleucina-8/imunologia , Monócitos/efeitos dos fármacos , Proteína Amiloide A Sérica/farmacologia , Anticorpos Neutralizantes/farmacologia , Linhagem Celular , Quimiocina CCL3/antagonistas & inibidores , Quimiocina CCL3/genética , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Cultura em Câmaras de Difusão , Relação Dose-Resposta Imunológica , Regulação da Expressão Gênica , Humanos , Interleucina-8/agonistas , Interleucina-8/antagonistas & inibidores , Interleucina-8/genética , Monócitos/citologia , Monócitos/imunologia , Cultura Primária de Células , Receptores CCR1/antagonistas & inibidores , Receptores CCR1/genética , Receptores CCR1/imunologia , Receptores CCR5/genética , Receptores CCR5/imunologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais
18.
Immunobiology ; 219(3): 218-29, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24268109

RESUMO

Dendritic cells (DCs) are potent antigen presenting cells, described as the initiators of adaptive immune responses. Immature monocyte-derived DCs (MDDC) showed decreased CD14 expression, increased cell surface markers DC-SIGN and CD1a and enhanced levels of receptors for the chemokines CCL3 (CCR1/CCR5) and CXCL8 (CXCR1/CXCR2) compared with human CD14⁺ monocytes. After further MDDC maturation by LPS, the markers CD80 and CD83 and the chemokine receptors CXCR4 and CCR7 were upregulated, whereas CCR1, CCR2 and CCR5 expression was reduced. CCL3 dose-dependently synergized with CXCL8 or CXCL12 in chemotaxis of immature MDDC. CXCL12 augmented the CCL3-induced ERK1/2 and Akt phosphorylation in immature MDDC, although the synergy between CCL3 and CXCL12 in chemotaxis of immature MDDC was dependent on the Akt signaling pathway but not on ERK1/2 phosphorylation. CCL2 also synergized with CXCL12 in immature MDDC migration. Moreover, two CXC chemokines not sharing receptors (CXCL12 and CXCL8) cooperated in immature MDDC chemotaxis, whereas two CC chemokines (CCL3 and CCL7) sharing CCR1 did not. Further, the non-chemokine G protein-coupled receptor ligands chemerin and fMLP synergized with respectively CCL7 and CCL3 in immature MDDC signaling and migration. Finally, CXCL12 and CCL3 did not cooperate, but CXCL12 synergized with CCL21 in mature MDDC chemotaxis. Thus, chemokine synergy in immature and mature MDDC migration is dose-dependently regulated by chemokines via alterations in their chemokine receptor expression pattern according to their role in immune responses.


Assuntos
Quimiocinas/metabolismo , Células Dendríticas/imunologia , Monócitos/imunologia , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Imunidade Adaptativa , Antígenos CD/metabolismo , Diferenciação Celular , Células Cultivadas , Quimiotaxia , Humanos , Imunidade Inata , Proteína Oncogênica v-akt/metabolismo , Receptor Cross-Talk , Receptores de Quimiocinas/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...