Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718352

RESUMO

Water-mediated proton transfer reactions are central for catalytic processes in a wide range of biochemical systems, ranging from biological energy conversion to chemical transformations in the metabolism. Yet, the accurate computational treatment of such complex biochemical reactions is highly challenging and requires the application of multiscale methods, in particular hybrid quantum/classical (QM/MM) approaches combined with free energy simulations. Here, we combine the unique exploration power of new advanced sampling methods with density functional theory (DFT)-based QM/MM free energy methods for multiscale simulations of long-range protonation dynamics in biological systems. In this regard, we show that combining multiple walkers/well-tempered metadynamics with an extended system adaptive biasing force method (MWE) provides a powerful approach for exploration of water-mediated proton transfer reactions in complex biochemical systems. We compare and combine the MWE method also with QM/MM umbrella sampling and explore the sampling of the free energy landscape with both geometric (linear combination of proton transfer distances) and physical (center of excess charge) reaction coordinates and show how these affect the convergence of the potential of mean force (PMF) and the activation free energy. We find that the QM/MM-MWE method can efficiently explore both direct and water-mediated proton transfer pathways together with forward and reverse hole transfer mechanisms in the highly complex proton channel of respiratory Complex I, while the QM/MM-US approach shows a systematic convergence of selected long-range proton transfer pathways. In this regard, we show that the PMF along multiple proton transfer pathways is recovered by combining the strengths of both approaches in a QM/MM-MWE/focused US (FUS) scheme and reveals new mechanistic insight into the proton transfer principles of Complex I. Our findings provide a promising basis for the quantitative multiscale simulations of long-range proton transfer reactions in biological systems.

2.
J Am Chem Soc ; 145(31): 17075-17086, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490414

RESUMO

Complex I is a redox-driven proton pump that drives electron transport chains and powers oxidative phosphorylation across all domains of life. Yet, despite recently resolved structures from multiple organisms, it still remains unclear how the redox reactions in Complex I trigger proton pumping up to 200 Å away from the active site. Here, we show that the proton-coupled electron transfer reactions during quinone reduction drive long-range conformational changes of conserved loops and trans-membrane (TM) helices in the membrane domain of Complex I from Yarrowia lipolytica. We find that the conformational switching triggers a π → α transition in a TM helix (TM3ND6) and establishes a proton pathway between the quinone chamber and the antiporter-like subunits, responsible for proton pumping. Our large-scale (>20 µs) atomistic molecular dynamics (MD) simulations in combination with quantum/classical (QM/MM) free energy calculations show that the helix transition controls the barrier for proton transfer reactions by wetting transitions and electrostatic effects. The conformational switching is enabled by re-arrangements of ion pairs that propagate from the quinone binding site to the membrane domain via an extended network of conserved residues. We find that these redox-driven changes create a conserved coupling network within the Complex I superfamily, with point mutations leading to drastic activity changes and mitochondrial disorders. On a general level, our findings illustrate how catalysis controls large-scale protein conformational changes and enables ion transport across biological membranes.


Assuntos
Complexo I de Transporte de Elétrons , Prótons , Complexo I de Transporte de Elétrons/metabolismo , Oxirredução , Transporte de Elétrons , Quinonas , Bombas de Próton/metabolismo , Catálise
3.
J Am Chem Soc ; 145(10): 5696-5709, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36811855

RESUMO

Electron bifurcation is a fundamental energy coupling mechanism widespread in microorganisms that thrive under anoxic conditions. These organisms employ hydrogen to reduce CO2, but the molecular mechanisms have remained enigmatic. The key enzyme responsible for powering these thermodynamically challenging reactions is the electron-bifurcating [FeFe]-hydrogenase HydABC that reduces low-potential ferredoxins (Fd) by oxidizing hydrogen gas (H2). By combining single-particle cryo-electron microscopy (cryoEM) under catalytic turnover conditions with site-directed mutagenesis experiments, functional studies, infrared spectroscopy, and molecular simulations, we show that HydABC from the acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui employ a single flavin mononucleotide (FMN) cofactor to establish electron transfer pathways to the NAD(P)+ and Fd reduction sites by a mechanism that is fundamentally different from classical flavin-based electron bifurcation enzymes. By modulation of the NAD(P)+ binding affinity via reduction of a nearby iron-sulfur cluster, HydABC switches between the exergonic NAD(P)+ reduction and endergonic Fd reduction modes. Our combined findings suggest that the conformational dynamics establish a redox-driven kinetic gate that prevents the backflow of the electrons from the Fd reduction branch toward the FMN site, providing a basis for understanding general mechanistic principles of electron-bifurcating hydrogenases.


Assuntos
Elétrons , Hidrogenase , Hidrogenase/química , NAD/metabolismo , Microscopia Crioeletrônica , Ferredoxinas/química , Oxirredução , Hidrogênio/química , Transporte de Elétrons
4.
J Am Chem Soc ; 142(52): 21758-21766, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33325238

RESUMO

The respiratory complex I is a gigantic (1 MDa) redox-driven proton pump that reduces the ubiquinone pool and generates proton motive force to power ATP synthesis in mitochondria. Despite resolved molecular structures and biochemical characterization of the enzyme from multiple organisms, its long-range (∼300 Å) proton-coupled electron transfer (PCET) mechanism remains unsolved. We employ here microsecond molecular dynamics simulations to probe the dynamics of the mammalian complex I in combination with hybrid quantum/classical (QM/MM) free energy calculations to explore how proton pumping reactions are triggered within its 200 Å wide membrane domain. Our simulations predict extensive hydration dynamics of the antiporter-like subunits in complex I that enable lateral proton transfer reactions on a microsecond time scale. We further show how the coupling between conserved ion pairs and charged residues modulate the proton transfer dynamics, and how transmembrane helices and gating residues control the hydration process. Our findings suggest that the mammalian complex I pumps protons by tightly linked conformational and electrostatic coupling principles.


Assuntos
Biocatálise , Complexo I de Transporte de Elétrons/metabolismo , Simulação de Dinâmica Molecular , Água/metabolismo , Transporte de Elétrons , Complexo I de Transporte de Elétrons/química , Teoria Quântica , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...