Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 9479-9492, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547041

RESUMO

Single-site photocatalysts (SSPCs) are well-established as potent platforms for designing innovative materials to accomplish direct solar-to-fuel conversion. Compared to classical inorganic porous materials, such as zeolites and silica, covalent organic frameworks (COFs)─an emerging class of porous polymers that combine high surface areas, structural diversity, and chemical stability─are attractive candidates for SSPCs due to their molecular-level precision and intrinsic light harvesting ability, both amenable to structural engineering. In this Perspective, we summarize the design concepts and state-of-the-art strategies for the construction of COF SSPCs, and we review the development of COF SSPCs and their applications in solar-to-fuel conversion from their inception. Underlying pitfalls concerning photocatalytic characterization are discussed, and perspectives for the future development of this burgeoning field are given.

2.
Chem Sci ; 11(47): 12647-12654, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34094458

RESUMO

Interactions between extended π-systems are often invoked as the main driving force for stacking and crystallization of 2D organic polymers. In covalent organic frameworks (COFs), the stacking strongly influences properties such as the accessibility of functional sites, pore geometry, and surface states, but the exact nature of the interlayer interactions is mostly elusive. The stacking mode is often identified as eclipsed based on observed high symmetry diffraction patterns. However, as pointed out by various studies, the energetics of eclipsed stacking are not favorable and offset stacking is preferred. This work presents lower and higher apparent symmetry modifications of the imine-linked TTI-COF prepared through high- and low-temperature reactions. Through local structure investigation by pair distribution function analysis and simulations of stacking disorder, we observe random local layer offsets in the low temperature modification. We show that while stacking disorder can be easily overlooked due to the apparent crystallographic symmetry of these materials, total scattering methods can help clarify this information and suggest that defective local structures could be much more prevalent in COFs than previously thought. A detailed analysis of the local structure helps to improve the search for and design of highly porous tailor-made materials.

3.
Chemistry ; 23(54): 13455-13464, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28699670

RESUMO

Lewis base-borane complexes are shown to be potent hydrogen atom donors in radical chain reduction reactions. Results obtained in 1 H, 11 B, and 13 C NMR measurements and kinetic experiments support a complex reaction mechanism involving the parent borane as well as its initial reaction products as active hydrogen atom donors. Efficient reduction reactions of iodides, bromides, and xanthates in apolar solvents rely on initiator systems generating oxygen-centered radicals under thermal conditions and pyridine-borane complexes carrying solubilizing substituents. In contrast to tin hydride reagents, the pyridine-boranes reduce xanthates faster than the corresponding iodides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA