Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Atmos ; 2(2): 146-164, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35419523

RESUMO

Atmospheric aerosols have significant effects on the climate and on human health. New particle formation (NPF) is globally an important source of aerosols but its relevance especially towards aerosol mass loadings in highly polluted regions is still controversial. In addition, uncertainties remain regarding the processes leading to severe pollution episodes, concerning e.g. the role of atmospheric transport. In this study, we utilize air mass history analysis in combination with different fields related to the intensity of anthropogenic emissions in order to calculate air mass exposure to anthropogenic emissions (AME) prior to their arrival at Beijing, China. The AME is used as a semi-quantitative metric for describing the effect of air mass history on the potential for aerosol formation. We show that NPF events occur in clean air masses, described by low AME. However, increasing AME seems to be required for substantial growth of nucleation mode (diameter < 30 nm) particles, originating either from NPF or direct emissions, into larger mass-relevant sizes. This finding assists in establishing and understanding the connection between small nucleation mode particles, secondary aerosol formation and the development of pollution episodes. We further use the AME, in combination with basic meteorological variables, for developing a simple and easy-to-apply regression model to predict aerosol volume and mass concentrations. Since the model directly only accounts for changes in meteorological conditions, it can also be used to estimate the influence of emission changes on pollution levels. We apply the developed model to briefly investigate the effects of the COVID-19 lockdown on PM2.5 concentrations in Beijing. While no clear influence directly attributable to the lockdown measures is found, the results are in line with other studies utilizing more widely applied approaches.

2.
Nature ; 488(7410): 193-6, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22874964

RESUMO

Atmospheric oxidation is a key phenomenon that connects atmospheric chemistry with globally challenging environmental issues, such as climate change, stratospheric ozone loss, acidification of soils and water, and health effects of air quality. Ozone, the hydroxyl radical and the nitrate radical are generally considered to be the dominant oxidants that initiate the removal of trace gases, including pollutants, from the atmosphere. Here we present atmospheric observations from a boreal forest region in Finland, supported by laboratory experiments and theoretical considerations, that allow us to identify another compound, probably a stabilized Criegee intermediate (a carbonyl oxide with two free-radical sites) or its derivative, which has a significant capacity to oxidize sulphur dioxide and potentially other trace gases. This compound probably enhances the reactivity of the atmosphere, particularly with regard to the production of sulphuric acid, and consequently atmospheric aerosol formation. Our findings suggest that this new atmospherically relevant oxidation route is important relative to oxidation by the hydroxyl radical, at least at moderate concentrations of that radical. We also find that the oxidation chemistry of this compound seems to be tightly linked to the presence of alkenes of biogenic origin.


Assuntos
Atmosfera/química , Oxidantes/química , Dióxido de Enxofre/química , Alcenos/metabolismo , Finlândia , Radicais Livres/química , Radical Hidroxila/química , Oxidantes/metabolismo , Ozônio/química , Dióxido de Enxofre/análise , Terpenos/química , Terpenos/metabolismo , Árvores/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...