Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(28): e2220111120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399381

RESUMO

The seasonal availability of light and micronutrients strongly regulates productivity in the Southern Ocean, restricting biological utilization of macronutrients and CO2 drawdown. Mineral dust flux is a key conduit for micronutrients to the Southern Ocean and a critical mediator of multimillennial-scale atmospheric CO2 oscillations. While the role of dust-borne iron (Fe) in Southern Ocean biogeochemistry has been examined in detail, manganese (Mn) availability is also emerging as a potential driver of past, present, and future Southern Ocean biogeochemistry. Here, we present results from fifteen bioassay experiments along a north-south transect in the undersampled eastern Pacific sub-Antarctic zone. In addition to widespread Fe limitation of phytoplankton photochemical efficiency, we found further responses following the addition of Mn at our southerly stations, supporting the importance of Fe-Mn co-limitation in the Southern Ocean. Moreover, addition of different Patagonian dusts resulted in enhanced photochemical efficiency with differential responses linked to source region dust characteristics in terms of relative Fe/Mn solubility. Changes in the relative magnitude of dust deposition, combined with source region mineralogy, could hence determine whether Fe or Mn limitation control Southern Ocean productivity under future as well as past climate states.

2.
J Fish Biol ; 103(1): 194-198, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37141044

RESUMO

The microplastic loads in elvers of the critically endangered European eel Anguilla anguilla, sampled in the lower reaches of three English rivers, were very low (incidence: 3.3%, mean ± s.d.: 0.03 ± 0.18 particles) and did not vary with body length or between rivers. Particles were mostly black, polyolefins, fibres and fragments of size 101-200 µm. Current levels indicate a low contamination pressure locally and, consequently, management efforts might prioritise mitigating the effects of other stressors affecting the species.


Assuntos
Anguilla , Animais , Microplásticos , Plásticos , Água Doce , Inglaterra
3.
Sci Total Environ ; 838(Pt 3): 156477, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660581

RESUMO

Urban freshwaters, their sediments and resident biota are often highly susceptible to microplastic contamination from catchment-specific sources. Water velocity and spatiotemporal dynamics within the system can impact microplastic loads, while biological features may additionally impact levels within freshwater biota. Here, we investigated the spatiotemporal variations in microplastic loads collected from sediment, macroinvertebrate and fish samples from an urban watercourse (Bourne Stream) in Dorset, southwest England. Sediment particles were mostly fragments of colours (especially orange and purple) whereas microplastics in both macroinvertebrates and fishes were blue/green and fibres. Across all sample types, the dominant particle size class was ≤100 µm. Median (M) and range (R) of microplastic loads within each sample type were sediment: M = 0.06, R = 0-0.36 particles g-1; macroinvertebrates: M = 0, R = 0-4 particles per batch; and fishes: M = 1, R = 0-6 particles per individual. Sediment loads varied spatially, with the highest load in the most upstream site, whereas biotic loads did not vary across space and time. Macroinvertebrate batch loadings varied between taxa and feeding guild, with counts significantly higher in annelids but lower in herbivores. Fish counts were higher in species with true, differentiated stomachs, but with the effects of species, feeding guild and body size being non-significant. Within sites, mean microplastic loads did not correlate between sediment, macroinvertebrate and fish samples. These results suggest that sediment freshwater microplastic loadings may vary spatially but that these trends are not reflected by, or correlated to, those in the biota where ingestion varies with biological traits. Assessments of freshwater microplastic contamination must therefore consider sampling spatiotemporally and across different biotic communities to fully understand the scale of contamination, and to subsequently undertake effective mitigation steps.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Biota , Monitoramento Ambiental , Peixes , Plásticos , Rios , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 839: 156321, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636538

RESUMO

Microplastics are a relatively new but important form of freshwater contamination that can be ingested by a range of different species, with particle counts thought to be predictable from species ecology and morphology. Here, we report levels of microplastics in a 26 µm-5 mm size range within the macroinvertebrate and fish community of a lowland river (Dorset Stour, SW England), and test the hypothesis that counts are predictable from characteristics such as feeding guild, body length and trophic position. Macroinvertebrates (n = 257, 12 taxa) and fish (n = 418, 9 species) were collected from distinct river reaches by kick sampling and rod and line angling, respectively. Batches of whole macroinvertebrates and individual fish gastrointestinal tracts were digested with 30% hydrogen peroxide before microplastic screening and FTIR polymer confirmation on a particle subset. Particles were found in 40% of pooled macroinvertebrate batches (taxa incidences: 14-75%) and 39% of fishes (species incidences: 29-47%). Dominant particle feature categories were ≤100 µm, blue/green, fragments and fibres identified as various polyolefins. Although particle counts in macroinvertebrates were highest in Ephemeroptera (mean of 0.74 particles per individual), the relationships between particle loads, batch number and guild were all non-significant. In fishes, particle counts were not significantly related to species, stomach structure, feeding guild or body length, with spatial differences also not apparent across the catchment. Individual fish particle counts were similarly not significantly associated with their trophic positions (calculated from bulk δ15N values for a subset of fishes) and parasite load of Pomphorhynchus tereticollis. Correlations between fish and macroinvertebrate particle counts within specific river reaches were also not significant. In entirety, these results indicated although loadings of microplastic particles were relatively consistent within the two communities, they were not predictable from any of their ecological or morphological characteristics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Plásticos , Poluentes Químicos da Água/análise
5.
Nat Commun ; 11(1): 4073, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811835

RESUMO

Concern over plastic pollution of the marine environment is severe. The mass-imbalance between the plastic litter supplied to and observed in the ocean currently suggests a missing sink. However, here we show that the ocean interior conceals high loads of small-sized plastic debris which can balance and even exceed the estimated plastic inputs into the ocean since 1950. The combined mass of just the three most-littered plastics (polyethylene, polypropylene, and polystyrene) of 32-651 µm size-class suspended in the top 200 m of the Atlantic Ocean is 11.6-21.1 Million Tonnes. Considering that plastics of other sizes and polymer types will be found in the deeper ocean and in the sediments, our results indicate that both inputs and stocks of ocean plastics are much higher than determined previously. It is thus critical to assess these terms across all size categories and polymer groups to determine the fate and danger of plastic contamination.

6.
Sci Rep ; 10(1): 14147, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839471

RESUMO

Microplastics are contaminants of increasing global environmental concern. Estuaries are a major transport pathway for land-derived plastics to the open ocean but are relatively understudied compared to coastal and open marine environments. The role of the "estuarine filter", by which the supply of sediments and contaminants to the sea is moderated by processes including vegetative trapping and particle flocculation, remains poorly defined for microplastics land to sea transfer. Here, we focus on the sea surface microlayer (SML) as a vector for microplastics, and use SML sampling to assess microplastic trapping in a temperate marsh system in Southampton Water, UK. The SML is known to concentrate microplastics relative to the underlying water and is the first part of rising tidal waters to traverse intertidal and upper tidal surfaces. Sampling a salt marsh creek at high temporal resolution allowed assessment of microplastics in-wash and outflow from the salt marsh, and its relationship with tidal state and bulk suspended sediment concentrations (SSC), over spring and neap tides. A statistically significant decrease in microplastics abundance from the flood tide to the ebb tide was found, and a weak positive relationship with SSC observed.

7.
Proc Natl Acad Sci U S A ; 112(4): 1089-94, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25561526

RESUMO

The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean.

8.
Geophys Res Lett ; 41(23): 8460-8468, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26074644

RESUMO

Correlations between particulate organic carbon (POC) and mineral fluxes in the deep ocean have inspired the inclusion of "ballast effect" parameterizations in carbon cycle models. A recent study demonstrated regional variability in the effect of ballast minerals on the flux of POC in the deep ocean. We have undertaken a similar analysis of shallow export data from the Arctic, Atlantic, and Southern Oceans. Mineral ballasting is of greatest importance in the high-latitude North Atlantic, where 60% of the POC flux is associated with ballast minerals. This fraction drops to around 40% in the Southern Ocean. The remainder of the export flux is not associated with minerals, and this unballasted fraction thus often dominates the export flux. The proportion of mineral-associated POC flux often scales with regional variation in export efficiency (the proportion of primary production that is exported). However, local discrepancies suggest that regional differences in ecology also impact the magnitude of surface export. We propose that POC export will not respond equally across all high-latitude regions to possible future changes in ballast availability.

9.
Mar Pollut Bull ; 62(10): 2170-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21839484

RESUMO

Sinking of aggregated phytoplankton cells is a crucial mechanism for transporting carbon to the seafloor and benthic ecosystem, with such aggregates often scavenging particulate material from the water column as they sink. In the vicinity of drilling rigs used by the oil and gas industry, the concentration of particulate matter in the water column may at times be enriched as a result of the discharge of 'drill cuttings' - drilling waste material. This investigation exposed laboratory produced phytoplankton aggregates to drill cuttings of various composition (those containing no hydrocarbons from reservoir rocks and those with a <1% hydrocarbon content) and assessed the change in aggregate size, settling rate and resuspension behavior of these using resuspension chambers and settling cylinders. Results indicate that both settling velocity and seabed stress required to resuspend the aggregates are greater in aggregates exposed to drill cuttings, with these increases most significant in aggregates exposed to hydrocarbon containing drill cuttings.


Assuntos
Indústrias Extrativas e de Processamento , Sedimentos Geológicos/química , Material Particulado/química , Poluentes da Água/química , Ciclo do Carbono , Monitoramento Ambiental , Modelos Químicos , Tamanho da Partícula , Fitoplâncton/química , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...