Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 54(24): 4530-4544, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34881862

RESUMO

ConspectusDuring the last few decades, the design of catalytic systems for CO2 reduction has been extensively researched and generally involves (1) traditional approaches using molecular organic/organometallic materials and heterogeneous inorganic semiconductors and (2) combinatory approaches wherein these materials are combined as needed. Recently, we have devised a number of new TiO2-mediated multicomponent hybrid systems that synergistically integrate the intrinsic merits of various materials, namely, molecular photosensitizers/catalysts and n-type TiO2 semiconductors, and lower the energetic and kinetic barriers between components. We have termed such multicomponent hybrid systems assembled from the hybridization of various organic/inorganic/organometallic units in a single platform inorganometallic photocatalysts. The multicomponent inorganometallic (MIOM) hybrid system onto which the photosensitizer and catalyst are coadsorbed efficiently eliminates the need for bulk-phase diffusion of the components and avoids the accumulation of radical intermediates that invokes a degradation pathway, in contrast to the homogeneous system, in which the free reactive species are concentrated in a confined reaction space. In particular, in energetic terms, we discovered that in nonaqueous media, the conduction band (CB) levels of reduced TiO2 (TiO2(e-)) are positioned at a higher level (in the range -1.5 to -1.9 V vs SCE). This energetic benefit of reduced TiO2 allows smooth electron transfer (ET) from injected electrons (TiO2(e-)) to the coadsorbed CO2 reduction catalyst, which requires relatively high reducing power (at least more than -1.1 V vs SCE). On the other hand, the existence of various shallow surface trapping sites and surface bands, which are 0.3-1.0 eV below the CB of TiO2, efficiently facilitates electron injection from any photosensitizer (including dyes having low excited energy levels) to TiO2 without energetic limitation. This is contrasted with most photocatalytic systems, wherein successive absorption of single high-energy photons is required to produce excited states with enough energy to fulfill photocatalytic reaction, which may allow unwanted side reactions during photocatalysis. In this Account, we present our recent research efforts toward advancing these MIOM hybrid systems for photochemical CO2 reduction and discuss their working mechanisms in detail. Basic ET processes within the MIOM system, including intervalence ET in organic/organometallic redox systems, metal-to-ligand charge transfer of organometallic complexes, and interfacial/outer-sphere charge transfer between components, were investigated by conducting serial photophysical and electrochemical analyses. Because such ET events occur primarily at the interface between the components, the efficiency of interfacial ET between the molecular components (organic/organometallic photosensitizers and molecular reduction catalysts) and the bulk inorganic solid (mainly n-type TiO2 semiconductors) has a significant influence on the overall photochemical reaction kinetics and mechanism. In some TiO2-mediated MIOM hybrids, the chemical attachment of organic or organometallic photosensitizing units onto TiO2 semiconductors efficiently eliminates the step of diffusion/collision-controlled ET between components and prevents the accumulation of reactive species (oxidatively quenched cations or reductively quenched anions) in the reaction solution, ensuring steady photosensitization over an extended reaction period. The site isolation of a single-site organometallic catalyst employing TiO2 immobilization promotes the monomeric catalytic pathway during the CO2 reduction process, resulting in enhanced product selectivity and catalytic performance, including lifetime extension. In addition, as an alternative inorganic solid scaffold, the introduction of a host porphyrin matrix (interlinked in a metal-organic framework (MOF) material) led to efficient and durable photocatalytic CO2 conversion by the new MOF-Re(I) hybrid as a result of efficient light harvesting/exciton migration in the porphyrinic MOF and rapid quenching of the photogenerated electrons by the doped Re(I) catalytic sites. Overall, the case studies presented herein provide valuable insights for the rational design of advanced multicomponent hybrid systems for artificial photosynthesis involving CO2 reduction.

2.
ACS Appl Mater Interfaces ; 13(2): 2710-2722, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33423462

RESUMO

A porphyrinic metal-organic framework (PMOF) known as PCN-222(Zn) was chemically doped with a molecular Re(I) catalyst-bearing carboxylate anchoring group to form a new type of metal-organic framework (MOF)-Re(I) hybrid photocatalyst. The porphyrinic MOF-sensitized hybrid (PMOF/Re) was prepared with an archetypical CO2 reduction catalyst, (L)ReI(CO)3Cl (Re(I); L = 4,4'-dicarboxylic-2,2'-bipyridine), in the presence of 3 vol % water produced CO with no leveling-off tendency for 59 h to give a turnover number of ≥1893 [1070 ± 80 µmol h-1 (g MOF)-1]. The high catalytic activity arises mainly from efficient exciton migration and funneling from photoexcited porphyrin linkers to the peripheral Re(I) catalytic sites, which is in accordance with the observed fast exciton (energy) migration (≈1 ps) in highly ordered porphyrin photoreceptors and the effective funneling into Re(I) catalytic centers in the Re(I)-doped PMOF sample. Enhanced catalytic performance is convincingly supported by serial photophysical measurements including decisive Stern-Volmer interpretation.

3.
Chemistry ; 26(70): 16733-16754, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32627219

RESUMO

Herein, we report the synthesis, and photochemical and -physical properties, as well as the catalytic performance, of a series of heteroleptic IrIII photosensitizers (IrPSs), [Ir(C^N)2 (N^NAryl )]+ , possessing ancillary ligands that are varied with aryl-substituents on bipyridyl unit [C^N=(2-pyridyl)benzo[b]thiophen-3-yl (btp); N^NAryl =4,4'-Y2 -bpy (Y=-Ph or -PhSi(Ph)3 ]. We found that the π-extension of bipyridyl ligand by aryl-substitution put bipyridyl ligand in use as an electron relay unit that performed charge accumulation before delivering to the catalytic center, greatly improving the overall CO2 -to-CO conversion activities. In a typical run, the aryl-substituted IrPS (tBu IrP-PhSi )-sensitized homogeneous systems (IrPS+ReI catalyst) gave a turnover number of 1340 (ΦCO =24.2 %) at the early stage of photolysis (<5 h). This study demonstrates that the π-character modulation on the ancillary bipyridyl ligand is critical for forthcoming catalytic performance.

4.
ACS Omega ; 4(10): 14272-14283, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31508551

RESUMO

Red light-sensitized squaraine (SQ) dyes were developed and incorporated into dye-sensitized catalysts (DSCs) with the formula of SQ/TiO2/Cat, and their efficacies were evaluated in terms of performance on either water or carbon dioxide reduction. Pt nanoparticles or fac-[Re(4,4'-bis-(diethoxyphosphorylmethyl)-2,2'-bipyridine)(CO)3Cl] were used as each catalytic center within the DSC frame of SQ/TiO2/Pt (Type I) or SQ/TiO2/Re(I) (Type II). In order to convey the potential utility of SQ in low energy sensitization, the following catalytic reductions were carried out under selective lower energy irradiation (>500 nm). Type I and II showed different catalytic performances, primarily due to the choice of solvent for each catalytic condition: hydrogenation was carried out in H2O, but CO2 reduction in dimethylformamide (DMF), and SQ was more stable in aqueous acid conditions for hydrogen generation than CO2 reduction in DMF. A suspension of Type I in 3 mL water containing 0.1 M ascorbic acid (pH = 2.66) resulted in efficient photocatalytic hydrogen evolution, producing 37 µmol of H2 for 4 h. However, in photocatalysis of Type II (SQ/TiO2/Re(I)) in 3 mL DMF containing 0.1 M 1,3-dimethyl-2-phenyl-1,3-dihydrobenzimidazole, the TiO2-bound SQ dyes were not capable of working as a low energy sensitizer because SQ was susceptible to dye decomposition in nucleophilic DMF conditions, resulting in DSC deactivation for the CO2 reduction. Even with the limitation of solvent, the DSC conditions for the utility of SQ have been established: the anchoring group effect of SQ with either phosphonic acid or carboxylic acid onto the TiO2 surface; energy alignment of SQ with the flat band potentials (E fb) of TiO2 semiconductors and the reduction power of electron donors; and the wavelength range of the light source used, particularly when >500 nm.

5.
Chemistry ; 25(59): 13609-13623, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31408218

RESUMO

A series of heteroleptic iridium(III) complexes functionalized with two phosphonic acid (-PO3 H2 ) groups (dfppy IrP, ppy IrP, btp IrP, and piq IrP) were prepared and anchored onto rhenium(I) catalyst (ReP)-loaded TiO2 particles (TiO2 /ReP) to build up a new IrP-sensitized TiO2 photocatalyst system (IrP/TiO2 /ReP). The photosensitizing behavior of the IrP series was examined within the IrP/TiO2 /ReP platform for the photocatalytic conversion of CO2 into CO. The four IrP-based ternary hybrids showed increased conversion activity and durability than that of the corresponding homo- (IrP+ReP) and heterogeneous (IrP+TiO2 /ReP) mixed systems. Among the four IrP/TiO2 /ReP photocatalysts, the low-energy-light (>500 nm) activated piq IrP immobilized ternary system (piq IrP/TiO2 /ReP) exhibited the most durable conversion activity, giving a turnover number of ≥730 for 170 h. A similar kinetic feature observed through time-resolved photoluminescence measurements of both btp IrP/TiO2 and TiO2 -free btp IrP films suggests that the net electron flow in the ternary hybrid proceeds dominantly through a reductive quenching mechanism, unlike the oxidative quenching route of typical dye/TiO2 -based photolysis.

6.
Inorg Chem ; 56(19): 12042-12053, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28902496

RESUMO

A series of cationic Ir(III) complexes ([Ir(btp)2(bpy-X2)]+ (Ir-X+: btp = (2-pyridyl)benzo[b]thiophen-3-yl; bpy-X2 = 4,4'-X2-2,2'-bipyridine (X = OMe, tBu, Me, H, and CN)) were applied as visible-light photosensitizer to the CO2 reduction to CO using a hybrid catalyst (TiO2/ReP) prepared by anchoring of Re(4,4'-Y2-bpy)(CO)3Cl (ReP; Y = CH2PO(OH)2) on TiO2 particles. Irradiation of a solution containing Ir-X+, TiO2/ReP particles, and an electron donor (1,3-dimethyl-2-phenyl-1,3-dihydrobenzimidazole) in N,N-dimethylformamide at greater than 400 nm resulted in the reduction of CO2 to CO with efficiencies in the order X = OMe > tBu ≈ Me > H; Ir-CN+ has no photosensitization effect. A notable observation is that Ir-tBu+ and Ir-Me+ are less efficient than Ir-OMe+ at an early stage of the reaction but reveal persistent photosensitization behavior for a much longer period of time unlike the latter. Comparable experiments showed that (1) the Ir-X+ sensitizers are commonly superior compared to Ru(bpy)32+, a widely used transition-metal photosensitizer, and (2) the system comprising Ir-OMe+ and TiO2/ReP is much more efficient than a homogeneous-solution system using Ir-OMe+ and Re(4,4'-Y'2-bpy)(CO)3Cl (Y' = CH2PO(OEt)2). Implications of the present observations involving reaction mechanisms associated with the different behavior of the photosensitizers are discussed in detail.

7.
Inorg Chem ; 56(9): 5305-5315, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28426230

RESUMO

We investigated the electrochemical and excited-state properties of 2,3-bis(2-pyridyl)pyrazine (dpp)-bridged bimetallic complexes, (L)2Ir-dpp-PtCl [1, L = 2-(4',6'-difluorophenyl)pyridinato-N,C2 (dfppy); 2, L = 2-phenylpyridinato-N,C2 (ppy)] and [(L)2Ir]2(dpp) [3, L = dfppy; 4, L = ppy] compared to monometallic complexes, (L)2Ir-dpp (5, L = dfppy; 6, L = ppy) and dpp-PtCl (dpp-PtIICl2; 7). The single-crystal X-ray crystallographic structures of 1, 3, 5, and 6 showed that 1 and 3 have approximately coplanar structures of the dpp unit, while the noncoordinated pyridine ring of dpp in 5 and 6 is largely twisted with respect to the pyrazine ring. We found that the properties of the bimetallic complex significantly depended on the electronic and geometrical modulations of each fragment: (1) electronic structure of the main L (C^N) ligand in an iridium chromophore (L = dfppy or ppy) and (2) planarity of the bridging ligand (dpp). Their electrochemical and photophysical properties revealed that efficient electron-transfer processes predominated in the bimetallic systems regardless of the second metal participation. The low efficiencies of photoluminescence of dpp-bridged Ir-Pt and Ir-Ir bimetallic complexes (1-4) could be explained by assuming the involvement of crossing to platinum- and iridium-based d-d states from the emissive state. Such stereochemical and electronic situations around dpp allowed thermally activated crossing to platinum- and iridium-based d-d states from the emissive triplet metal-to-ligand charge-transfer (3MLCT) state, followed by cleavage of the dpp-Pt and (L)2Ir-dpp bonds. The transient absorption study further confirmed that the planarity of the dpp bridging ligand, which was defined as the magnitude of tilt between the pyridine ring and pyrazine, had a direct correlation with the degree of nonradiative decay from the emissive iridium-based 3MLCT to the Ir d-d or Pt d-d state, leading to photoinduced dissociation of bimetallic complexes. From the dissociation pattern of metal complexes analyzed after photoirradiation, we found that their dissociation pathways were directly related to the quenching direction (either Ir d-d or Pt d-d) with a significant dependency on the relative 3MLCT levels of the (L)2Ir-dpp component.

8.
Faraday Discuss ; 198: 337-351, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28276551

RESUMO

Efficient hybrid photocatalysts for carbon dioxide reduction were developed from dye-sensitized TiO2 nanoparticles and their catalytic performance was optimized by ternary organic/inorganic components. Thus, the hybrid system consists of (E)-2-cyano-3-(5'-(5''-(p-(diphenylamino)phenyl)thiophen-2''-yl)thiophen-2'-yl)-acrylic acid as a sensitizer and fac-[Re(4,4'-bis(diethoxyphosphorylmethyl)-2,2'-bipyridine)(CO)3Cl] as a reduction catalyst (ReP), both of which have been fixed onto TiO2 semiconductors (s-TiO2, h-TiO2, d-TiO2). Mott-Schottky analysis on flat-band potential (Efb) of TiO2 mesoporous films has verified that Efb can be finely modulated by volume variation of water (0 to 20 vol%). The increase of added water resulted in substantial positive shifts of Efb from -1.93 V at 0 vol% H2O, to -1.74 V (3 vol% H2O), to -1.56 V (10 vol% H2O), and to -1.47 V (20 vol% H2O). As a result, with addition of 3-10 vol% water in the photocatalytic reaction, conversion efficiency of CO2 to CO increased significantly reaching a TON value of ∼350 for 30 h. Catalytic activity enhancement is mainly attributed to (1) the optimum alignment of Efb by 3-10 vol% water with respect to the of the dye and Ered of ReP for smooth electron transfer from photo-excited dye to RePvia the TiO2 semiconductor and (2) the water-induced acceleration of chemical processes on the fixed ReP. In addition, the energy level was further tuned by variation of the dye and ReP amounts. We also found that the intrinsic properties of TiO2 sources (morphology, size, agglomeration) exert a great influence on the overall photocatalytic activity of this hybrid system. Implications of the present observations and reaction mechanisms are discussed in detail.

9.
Angew Chem Int Ed Engl ; 56(4): 976-980, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-27966811

RESUMO

Visible-light irradiation of a ternary hybrid catalyst prepared by grafting a dye, an H2 evolving CoIII catalyst and a CO-producing ReI catalyst on TiO2 have been found to produce both H2 and CO (syngas) in CO2 -saturated N,N-dimethyl formamide (DMF)/water solution containing a 0.1 m sacrificial electron donor. The H2 /CO ratios are effectively controlled by changing either the water content of the solvent or the molar ratio of the ReI and CoIII catalysts ranging from 1:2 to 15:1. The controlled syngas formation is discussed in terms of competitive electron flow from TiO2 to each of the CO2 -reduction and hydrogen-evolving sites depending on the efficiencies of the two catalytic reaction cycles under given reaction conditions.

10.
Inorg Chem ; 55(7): 3324-31, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991672

RESUMO

Improvement of the stability of blue phosphorescent dopant material is one of the key factors for real application of organic light-emitting diodes (OLEDs). In this study, we found that the intramolecular hydrogen bonding in an ancillary ligand from a heteroleptic Ir(III) complex can play an important role in the stability of blue phosphorescence. To rationalize the role of intramolecular hydrogen bonding, a series of Ir(III) complexes is designed and prepared: Ir(dfppy)2(pic-OH) (1a), Ir(dfppy)2(pic-OMe) (1b), Ir(ppy)2(pic-OH) (2a), and Ir(ppy)2(pic-OMe) (2b). The emission lifetime of Ir(dfppy)2(pic-OH) (1a) (τem = 3.19 µs) in dichloromethane solution was found to be significantly longer than that of Ir(dfppy)2(pic-OMe) (1b) (τem = 0.94 µs), because of a substantial difference in the nonradiative decay rate (knr = 0.28 × 10(5) s(-1) for (1a) vs 2.99 × 10(5) s(-1) for (1b)). These results were attributed to the intramolecular OH···O═C hydrogen bond of the 3-hydroxy-picolinato ligand. Finally, device lifetime was significantly improved when 1a was used as the dopant compared to FIrpic, a well-known blue dopant. Device III (1a as dopant) achieved an operational lifetime of 34.3 h for an initial luminance of 400 nits compared to that of device IV (FIrpic as dopant), a value of 20.1 h, indicating that the intramolecular hydrogen bond in ancillary ligand is playing an important role in device stability.

11.
J Am Chem Soc ; 137(42): 13679-90, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26456369

RESUMO

Herein we report a detailed investigation of a highly robust hybrid system (sensitizer/TiO2/catalyst) for the visible-light reduction of CO2 to CO; the system comprises 5'-(4-[bis(4-methoxymethylphenyl)amino]phenyl-2,2'-dithiophen-5-yl)cyanoacrylic acid as the sensitizer and (4,4'-bis(methylphosphonic acid)-2,2'-bipyridine)Re(I)(CO)3Cl as the catalyst, both of which have been anchored on three different types of TiO2 particles (s-TiO2, h-TiO2, d-TiO2). It was found that remarkable enhancements in the CO2 conversion activity of the hybrid photocatalytic system can be achieved by addition of water or such other additives as Li(+), Na(+), and TEOA. The photocatalytic CO2 reduction efficiency was enhanced by approximately 300% upon addition of 3% (v/v) H2O, giving a turnover number of ≥570 for 30 h. A series of Mott-Schottky (MS) analyses on nanoparticle TiO2 films demonstrated that the flat-band potential (V(fb)) of TiO2 in dry DMF is substantially negative but positively shifts to considerable degrees in the presence of water or Li(+), indicating that the enhancement effects of the additives on the catalytic activity should mainly arise from optimal alignment of the TiO2 V(fb) with respect to the excited-state oxidation potential of the sensitizer and the reduction potential of the catalyst in our ternary system. The present results confirm that the TiO2 semiconductor in our heterogeneous hybrid system is an essential component that can effectively work as an electron reservoir and as an electron transporting mediator to play essential roles in the persistent photocatalysis activity of the hybrid system in the selective reduction of CO2 to CO.

12.
Chem Commun (Camb) ; 50(34): 4462-4, 2014 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-24660220

RESUMO

Hybrid systems prepared by fixing a Re(i) complex and a dye on three types of TiO2 nanoparticles in two different ways commonly revealed persistent photocatalysis of the CO2 reduction to CO with no levelling-off tendency under visible-light irradiation in DMF, giving a turnover number of ≥435.

13.
Chemistry ; 18(48): 15368-81, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23042083

RESUMO

Visible-light-driven H(2) evolution based on Dye/TiO(2)/Pt hybrid photocatalysts was investigated for a series of (E)-3-(5'-{4-[bis(4-R(1)-phenyl)amino]phenyl}-4,4'-(R(2))(2)-2,2'-bithiophen-5-yl)-2-cyanoacrylic acid dyes. Efficiencies of hydrogen evolution from aqueous suspensions in the presence of ethylenediaminetetraacetic acid as electron donor under illumination at λ>420 nm were found to considerably depend on the hydrophilic character of R(1), varying in the order MOD (R(1)=CH(3)OCH(2), R(2)=H)≈MO4D (R(1)=R(2)=CH(3)OCH(2))>HD (R(1)=R(2)=H)>PD (R(1)=C(3)H(7), R(2)=H). In the case of MOD/TiO(2)/Pt, the apparent quantum yield for photocatalyzed H(2) generation at 436 nm was 0.27±0.03. Transient absorption measurements for MOD- or PD-grafted transparent films of TiO(2) nanoparticles dipped into water at pH 3 commonly revealed ultrafast formation (<100 fs) of the dye radical cation (Dye(·+) ) followed by multicomponent decays, which involve minor fast decays (<5 ps) almost independent of R(1) and major slower decays with significant differences between the two samples: 1) the early decay of the major components for MOD is about 2.5 times slower than that for PD and 2) a redshift of the spectrum occurred for MOD with a time constant of 17 ps, but not for PD. The substituent effects on H(2) generation as well as on transient behavior have been discussed in terms substituent-dependent charge recombination (CR) of Dye(·+) with electrons in bulk, inner-trap, and/or interstitial-trap states, arising from different solvent reorganization.

14.
J Chem Phys ; 136(20): 204706, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667580

RESUMO

Effects of intermolecular interactions on the occupied electronic structure of amorphous solid of a carbazole-based material were investigated under an assumption that the organic solid consists of randomly oriented assemblies of dimers. The electronic energy states were calculated on the ensemble of large number of random dimers, of which geometries are relaxed using semiempirical van der Waals density functional theory. Intermolecular interactions result in splitting of energy level, and further disorders occur by aggregation of randomly orientated molecules. As a result, frontier occupied energy states can be represented by a superposition of Gaussian distributions, including (i) a main distribution with full width at half maximum of 80-110 meV, depending on the methods of relaxation and (ii) shoulders separated from the center of the main distribution with a value as large as 150 meV. A possible origin for the appearance of these shoulders was ascribed to the presence of molecular assemblies consisting of more tightly bound dimers compared with the others.

15.
Angew Chem Int Ed Engl ; 51(11): 2677-80, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22298500

RESUMO

A bright combination: a new type of donor-acceptor dyad, carbazolylaryl-substituted ortho-carboranes, which are conveniently prepared from the corresponding acetylenes and decaborane pathways, showed unique excited-state behavior associated with electron transfer unlike the meta- and para-counterparts.

16.
Inorg Chem ; 50(8): 3271-80, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21417428

RESUMO

We prepared a series of new heteroleptic ruthenium(II) complexes, Ru(NCS)(2)LL' (3a-3e), where L is 4,4'-di(hydroxycarbonyl)-2,2'-bipyridine and L' is 4,4'-di(p-X-phenyl)-2,2'-pyridine (X = CN (a), F (b), H (c), OMe (d), and NMe(2) (e)), in an attempt to explore the structure-activity relationships in their photophysical and electrochemical behavior and in their performance in dye-sensitized solar cells (DSSCs). When substituent X is changed from electron-donating NMe(2) to electron-withdrawing CN, the absorption and emission maxima reveal systematic bathochromic shifts. The redox potentials of these dyes are also significantly influenced by X. The electronic properties of the dyes were theoretically analyzed using density functional theory calculations; the results show good correlations with the experimental results. The solar-cell performance of DSSCs based on dye-grafted nanocrystalline TiO(2) using 3a-3e and standard N3 (bis[(4,4'-carboxy-2,2'-bipyridine)(thiocyanato)]ruthenium(II)) were compared, revealing substantial dependences on the dye structures, particularly on the remote substituent X. The 3d-based device showed the best performance: η = 8.30%, J(SC) = 16.0 mA·cm(-2), V(OC) = 717 mV, and ff = 0.72. These values are better than N3-based device.

17.
Org Lett ; 12(3): 460-3, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20041701

RESUMO

A series of dyes were synthesized to examine the roles of the hydrophilic characteristics of R in sensitized hydrogen generation by dye-grafted Pt/TiO(2) under visible light irradiation. The hydrogen-generation efficiencies and optimum amounts of the dyes grafted to Pt/TiO(2) were affected substantially by the hydrophilic and steric effects of R; moderately hydrophilic DEO1 and DEO2 showed higher sensitization activity at a lower loading than hydrophobic D-H.

18.
J Org Chem ; 62(10): 3194-3199, 1997 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-11671703

RESUMO

The oxidation reactions of hydroquinones, 2-naphthols, or 2,6-di-tert-butylphenol efficiently occurred by catalysis with alumina-supported copper(II) sulfate to give the corresponding benzoquinones, 1,1'-bi-2-naphthols, and 4,4'-diphenoquinone, respectively, in good yields. The synthetic potentiality of the catalytic reactions was demonstrated by easy isolation of the final products using only filtration and solvent evaporation as well as by application to large-scale syntheses of the benzoquinones and binaphthols. The catalysis with alumina-supported copper(II) sulfate was also applied to the oxidative intramolecular coupling of 5,5'-diacenaphthene to the corresponding perylene compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...