Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 254: 115286, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058971

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key glycolytic enzyme, plays a crucial role in the energy metabolism of cancer cells and has been proposed as a valuable target for the development of anticancer agents. Among a series of 5-substituted 3-bromo-4,5-dihydroisoxazole (BDHI) derivatives, we identified the spirocyclic compound 11, which is able to covalently inactivate recombinant human GAPDH (hGAPDH) with a faster reactivity than koningic acid, one of the most potent hGAPDH inhibitors known to date. Computational studies confirmed that conformational rigidification is crucial to stabilize the interaction of the inhibitor with the binding site, thus favoring the subsequent covalent bond formation. Investigation of intrinsic warhead reactivity at different pH disclosed the negligible reactivity of 11 with free thiols, highlighting its ability to selectively react with the activated cysteine of hGAPDH with respect to other sulfhydryl groups. Compound 11 strongly reduced cancer cell growth in four different pancreatic cancer cell lines and its antiproliferative activity correlated well with the intracellular inhibition of hGAPDH. Overall, our results qualify 11 as a potent hGAPDH covalent inhibitor with a moderate drug-like reactivity that could be further exploited to develop anticancer agents.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases , Glicólise , Neoplasias Pancreáticas/tratamento farmacológico , Compostos de Sulfidrila
2.
Signal Transduct Target Ther ; 8(1): 137, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949046

RESUMO

Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies.


Assuntos
Metabolômica , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Metabolismo Energético , Biomarcadores
3.
Cancers (Basel) ; 14(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35804925

RESUMO

A growing interest in the study of aerobic glycolysis as a key pathway for cancer-cell energetic metabolism, favouring tumour progression and invasion, has led to consider GAPDH as an effective drug target to specifically hit cancer cells. In this study, we have investigated a panel of 3-bromo-isoxazoline derivatives based on previously identified inhibitors of Plasmodium falciparum GAPDH (PfGAPDH). The compounds are active, to a different extent, as inhibitors of human-recombinant GAPDH. They showed an antiproliferative effect on pancreatic ductal-adenocarcinoma cells (PDAC) and pancreatic-cancer stem cells (CSCs), and among them two promising compounds were selected to be tested in vivo. Interestingly, these compounds were not effective in fibroblasts. The AXP-3019 derivative was able to block PDAC-cell growth in mice xenograft without apparent toxicity. The overall results support the assumption that selective inhibition of the glycolytic pathway, by targeting GAPDH, is an effective therapy for pancreatic cancer and that 3-bromo-isoxazoline derivatives represent a new class of anti-cancer compounds targeting glycolysis.

4.
Biomolecules ; 12(2)2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35204804

RESUMO

The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pancreáticas/metabolismo , Proteômica , Secretoma , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
5.
Cells ; 10(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34831372

RESUMO

The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.


Assuntos
Cisteína/metabolismo , Proteínas Mutantes/química , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Proteínas Mutantes/metabolismo , Oxirredução , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375106

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Gemcitabine (GEM) is used as the gold standard drug in PDAC treatment. However, due to its poor efficacy, it remains urgent to identify novel strategies to overcome resistance issues. In this context, an intense stroma reaction and the presence of cancer stem cells (CSCs) have been shown to influence PDAC aggressiveness, metastatic potential, and chemoresistance. METHODS: We used three-dimensional (3D) organotypic cultures grown on an extracellular matrix composed of Matrigel or collagen I to test the effect of the new potential therapeutic prodrug 4-(N)-stearoyl-GEM, called C18GEM. We analyzed C18GEM cytotoxic activity, intracellular uptake, apoptosis, necrosis, and autophagy induction in both Panc1 cell line (P) and their derived CSCs. RESULTS: PDAC CSCs show higher sensitivity to C18GEM treatment when cultured in both two-dimensional (2D) and 3D conditions, especially on collagen I, in comparison to GEM. The intracellular uptake mechanisms of C18GEM are mainly due to membrane nucleoside transporters' expression and fatty acid translocase CD36 in Panc1 P cells and to clathrin-mediated endocytosis and CD36 in Panc1 CSCs. Furthermore, C18GEM induces an increase in cell death compared to GEM in both cell lines grown on 2D and 3D cultures. Finally, C18GEM stimulated protective autophagy in Panc1 P and CSCs cultured on 3D conditions. CONCLUSION: We propose C18GEM together with autophagy inhibitors as a valid alternative therapeutic approach in PDAC treatment.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Matriz Extracelular/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Técnicas de Cultura de Órgãos/métodos , Pró-Fármacos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Desoxicitidina/farmacologia , Combinação de Medicamentos , Humanos , Laminina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/patologia , Proteoglicanas/metabolismo
7.
Biomolecules ; 10(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111081

RESUMO

The TP53 tumor suppressor gene is the most frequently altered gene in tumors and an increasing number of studies highlight that mutant p53 proteins can acquire oncogenic properties, referred to as gain-of-function (GOF). Reactive oxygen species (ROS) play critical roles as intracellular messengers, regulating numerous signaling pathways linked to metabolism and cell growth. Tumor cells frequently display higher ROS levels compared to healthy cells as a result of their increased metabolism as well as serving as an oncogenic agent because of its damaging and mutational properties. Several studies reported that in contrast with the wild type protein, mutant p53 isoforms fail to exert antioxidant activities and rather increase intracellular ROS, driving a pro-tumorigenic survival. These pro-oxidant oncogenic abilities of GOF mutant p53 include signaling and metabolic rewiring, as well as the modulation of critical ROS-related transcription factors and antioxidant systems, which lead ROS unbalance linked to tumor progression. The studies summarized here highlight that GOF mutant p53 isoforms might constitute major targets for selective therapeutic intervention against several types of tumors and that ROS enhancement driven by mutant p53 might represent an "Achilles heel" of cancer cells, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing the mutant TP53 gene.


Assuntos
Mutação com Ganho de Função , Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo
8.
Semin Cell Dev Biol ; 98: 4-14, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31039394

RESUMO

Succinate dehydrogenase (SDH) has been classically considered a mitochondrial enzyme with the unique property to participate in both the citric acid cycle and the electron transport chain. However, in recent years, several studies have highlighted the role of the SDH substrate, i.e. succinate, in biological processes other than metabolism, tumorigenesis being the most remarkable. For this reason, SDH has now been defined a tumor suppressor and succinate an oncometabolite. In this review, we discuss recent findings regarding alterations in SDH activity leading to succinate accumulation, which include SDH mutations, regulation of mRNA expression, post-translational modifications and endogenous SDH inhibitors. Further, we report an extensive examination of the role of succinate in cancer development through the induction of epigenetic and metabolic alterations and the effects on epithelial to mesenchymal transition, cell migration and invasion, and angiogenesis. Finally, we have focused on succinate and SDH as diagnostic markers for cancers having altered SDH expression/activity.


Assuntos
Neoplasias/metabolismo , Succinato Desidrogenase/metabolismo , Ácido Succínico/metabolismo , Animais , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias/diagnóstico , Succinato Desidrogenase/genética
9.
Arch Biochem Biophys ; 679: 108219, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812668

RESUMO

The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 isoforms can acquire oncogenic properties referred to as gain-of-function (GOF). In this study, we used wild-type (A375) and mutant p53 (MeWo) melanoma cell lines to assess the regulation of the mitochondrial antioxidant manganese superoxide dismutase (MnSOD) by mutant p53. The effects of mutant p53 were evaluated by qPCR, immunoblotting, enzyme activity assay, cell proliferation assay, reactive oxygen species (ROS) assay after cellular transfection. We demonstrate that mutant p53 induces MnSOD expression, which is recovered by the ROS scavenger N-acetyl-l-cysteine. This suggests MnSOD induction as a defense mechanism of melanoma cells to counterbalance the pro-oxidant conditions induced by mutant p53. We also demonstrate that mutant p53 induces the expression of Sirtuin3 (SIRT3), a major mitochondrial NAD+-dependent deacetylase, stimulating MnSOD deacetylation and enzymatic activity. Indeed, the restoration of SIRT3 reverses MnSOD activity decrease by mutant p53 knock-down. Finally, MnSOD knock-down further enhances mutant p53-mediated ROS increase, counteracting mutp53-dependent cell hyperproliferation. This indicates that SIRT3 and MnSOD act to maintain ROS levels controlled to promote cell proliferation and survival, providing new therapeutic opportunities to be further considered for clinical studies in cancer patients bearing mutant TP53 gene.


Assuntos
Melanoma/patologia , Mutação , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/genética , Acetilação , Linhagem Celular Tumoral , Humanos
10.
Int J Mol Sci ; 20(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027346

RESUMO

Several studies indicate that the cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has pleiotropic functions independent of its canonical role in glycolysis. The GAPDH functional diversity is mainly due to post-translational modifications in different amino acid residues or due to protein-protein interactions altering its localization from cytosol to nucleus, mitochondria or extracellular microenvironment. Non-glycolytic functions of GAPDH include the regulation of cell death, autophagy, DNA repair and RNA export, and they are observed in physiological and pathological conditions as cancer and neurodegenerative disorders. In disease, the knowledge of the mechanisms regarding GAPDH-mediated cell death is becoming fundamental for the identification of novel therapies. Here, we elucidate the correlation between autophagy and GAPDH in cancer, describing the molecular mechanisms involved and its impact in cancer development. Since autophagy is a degradative pathway associated with the regulation of cell death, we discuss recent evidence supporting GAPDH as a therapeutic target for autophagy regulation in cancer therapy. Furthermore, we summarize the molecular mechanisms and the cellular effects of GAPDH aggregates, which are correlated with mitochondrial malfunctions and can be considered a potential therapeutic target for various diseases, including cancer and neurodegenerative disorders.


Assuntos
Autofagia/fisiologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Humanos , Modelos Biológicos
11.
Biol Rev Camb Philos Soc ; 94(4): 1530-1546, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30972955

RESUMO

Tumour repopulation is recognized as a crucial event in tumour relapse where therapy-sensitive dying cancer cells influence the tumour microenvironment to sustain therapy-resistant cancer cell growth. Recent studies highlight the role of the oncometabolites succinate, fumarate, and 2-hydroxyglutarate in the aggressiveness of cancer cells and in the worsening of the patient's clinical outcome. These oncometabolites can be produced and secreted by cancer and/or surrounding cells, modifying the tumour microenvironment and sustaining an invasive neoplastic phenotype. In this review, we report recent findings concerning the role in cancer development of succinate, fumarate, and 2-hydroxyglutarate and the regulation of their related enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. We propose that oncometabolites are crucially involved in tumour repopulation. The study of the mechanisms underlying the relationship between oncometabolites and tumour repopulation is fundamental for identifying efficient anti-cancer therapeutic strategies and novel serum biomarkers in order to overcome cancer relapse.


Assuntos
Fumarato Hidratase/metabolismo , Isocitrato Desidrogenase/metabolismo , Neoplasias/patologia , Succinato Desidrogenase/metabolismo , Animais , Humanos , Neoplasias/enzimologia , Recidiva , Microambiente Tumoral
12.
Biochim Biophys Acta Mol Cell Res ; 1865(12): 1914-1923, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30296496

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and devastating human malignancies. In about 70% of PDACs the tumor suppressor gene TP53 is mutated generally resulting in conformational changes of mutant p53 (mutp53) proteins, which acquire oncogenic functions triggering aggressiveness of cancers and alteration of energetic metabolism. Here, we demonstrate that mutant p53 prevents the nuclear translocation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) stabilizing its cytoplasmic localization, thus supporting glycolysis of cancer cells and inhibiting cell death mechanisms mediated by nuclear GAPDH. We further show that the prevention of nuclear localization of GAPDH is mediated by both stimulation of AKT and repression of AMPK signaling, and is associated with the formation of the SIRT1:GAPDH complex. By using siRNA-GAPDH or an inhibitor of the enzyme, we functionally demonstrate that the maintenance of GAPDH in the cytosol has a critical impact on the anti-apoptotic and anti-autophagic effects driven by mutp53. Furthermore, the blockage of its mutp53-dependent cytoplasmic stabilization is able to restore the sensitivity of PDAC cells to the treatment with gemcitabine. Finally, our data suggest that mutp53-dependent enhanced glycolysis permits cancer cells to acquire sensitivity to anti-glycolytic drugs, such as 2-deoxyglucose, suggesting a potential personalized therapeutic approach in human cancers carrying mutant TP53 gene.


Assuntos
Carcinoma Ductal Pancreático/genética , Núcleo Celular/metabolismo , Desoxiglucose/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Neoplasias Pancreáticas/genética , Proteína Supressora de Tumor p53/genética , Quinases Proteína-Quinases Ativadas por AMP , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Mutação , Neoplasias Pancreáticas/metabolismo , Proteínas Quinases/metabolismo , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Gencitabina
13.
Br J Cancer ; 119(8): 994-1008, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30318520

RESUMO

BACKGROUND: The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 gain-of-function isoforms actively promote cancer malignancy. METHODS: A panel of wild-type and mutant p53 cancer cell lines of different tissues, including pancreas, breast, skin, and lung were used, as well as chronic lymphocytic leukemia (CLL) patients with different TP53 gene status. The effects of mutant p53 were evaluated by confocal microscopy, reactive oxygen species production assay, immunoblotting, and quantitative reverse transcription polymerase chain reaction after cellular transfection. RESULTS: We demonstrate that oncogenic mutant p53 isoforms are able to inhibit SESN1 expression and consequently the amount of SESN1/AMPK complex, resulting in the downregulation of the AMPK/PGC-1α/UCP2 axis and mitochondrial O2-· production. We also show a correlation between the decrease of reduced thiols with a poorer clinical outcome of CLL patients bearing mutant TP53 gene. The restoration of the mitochondrial uncoupling protein 2 (UCP2) expression, as well as the addition of the radical scavenger N-acetyl-L-cysteine, reversed the oncogenic effects of mutant p53 as cellular hyper-proliferation, antiapoptotic effect, and resistance to drugs. CONCLUSIONS: The inhibition of the SESN1/AMPK/PGC-1α/UCP2 axis contributes to the pro-oxidant and oncogenic effects of mutant p53, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing mutant TP53 gene.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcisteína/farmacologia , Sequestradores de Radicais Livres/farmacologia , Proteínas de Choque Térmico/biossíntese , Neoplasias/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Desacopladora 2/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Células MCF-7 , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Semin Cell Dev Biol ; 78: 3-12, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28751251

RESUMO

An ever-increasing number of studies highlight the role of cancer secretome in the modification of tumour microenvironment and in the acquisition of cancer cell resistance to therapeutic drugs. The knowledge of the mechanisms underlying the relationship between cancer cell-secreted factors and chemoresistance is becoming fundamental for the identification of novel anticancer therapeutic strategies overcoming drug resistance and novel prognostic secreted biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells compromising drug sensitivity. In particular, we highlight data from available literature describing the involvement of cancer cell-secreted molecules determining chemoresistance in an autocrine manner, including: i) growth factors; ii) glycoproteins; iii) inflammatory cytokines; iv) enzymes and chaperones; and v) tumor-derived exosomes.


Assuntos
Antineoplásicos/uso terapêutico , Comunicação Autócrina/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteoma/metabolismo , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Proteoma/genética , Microambiente Tumoral
15.
J Cell Biochem ; 119(3): 2696-2707, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29095525

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal of all human cancers with a high mortality rate. Resistance to conventional treatments and chemotherapeutics is a typical feature of PDAC. To investigate the causes of drug resistance it is essential to deeply investigate the mechanism of action of chemotherapeutics. In this study, we performed an in depth shotgun proteomic approach using the label-free proteomic SWATH-MS analysis to investigate novel insights of the mechanism of action of the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) in PDAC cells. This proteomic analysis in PaCa44 cells and data elaboration of TSA-regulated proteins by bioinformatics showed an overall up-regulation of cytokeratins and other proteins related to the cytoskeleton organization, keratinization, and apoptotic cell death. On the contrary, a large amount of the down-regulated proteins by TSA treatment belongs to the cellular energetic metabolism and to the machinery of protein synthesis, such as ribosomal proteins, determining synergistic cell growth inhibition by the combined treatment of TSA and the glycolytic inhibitor 2-deoxy-d-glucose in a panel of PDAC cell lines. Data are available via ProteomeXchange with identifier PXD007801.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Citoesqueleto/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Citoesqueleto/patologia , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteômica
16.
Free Radic Biol Med ; 113: 176-189, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28962872

RESUMO

Several studies indicate that mitochondrial uncoupling protein 2 (UCP2) plays a pivotal role in cancer development by decreasing reactive oxygen species (ROS) produced by mitochondrial metabolism and by sustaining chemoresistance to a plethora of anticancer drugs. Here, we demonstrate that inhibition of UCP2 triggers Akt/mTOR pathway in a ROS-dependent mechanism in pancreatic adenocarcinoma cells. This event reduces the antiproliferative outcome of UCP2 inhibition by genipin, creating the conditions for the synergistic counteraction of cancer cell growth with the mTOR inhibitor everolimus. Inhibition of pancreatic adenocarcinoma cell growth and induction of apoptosis by genipin and everolimus treatment are functionally related to nuclear translocation of the cytosolic glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The synthetic compound (S)-benzyl-2-amino-2-(S)-3-bromo-4,5-dihydroisoxazol-5-yl-acetate (AXP3009), which binds GAPDH at its redox-sensitive Cys152, restores cell viability affected by the combined treatment with genipin and everolimus, suggesting a role for ROS production in the nuclear translocation of GAPDH. Caspase-mediated apoptosis by genipin and everolimus is further potentiated by the autophagy inhibitor 3-methyladenine revealing a protective role for Beclin1-mediated autophagy induced by the treatment. Mice xenograft of pancreatic adenocarcinoma further confirmed the antiproliferative outcome of drug combination without toxic effects for animals. Tumor masses from mice injected with UCP2 and mTOR inhibitors revealed a strong reduction in tumor volume and number of mitosis associated with a marked GAPDH nuclear positivity. Altogether, these results reveal novel mechanisms through which UCP2 promotes cancer cell proliferation and support the combined inhibition of UCP2 and of Akt/mTOR pathway as a novel therapeutic strategy in the treatment of pancreatic adenocarcinoma.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Everolimo/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Iridoides/farmacologia , Neoplasias Pancreáticas/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína Desacopladora 2/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Everolimo/uso terapêutico , Feminino , Humanos , Iridoides/uso terapêutico , Masculino , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/fisiopatologia , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína Desacopladora 2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biochim Biophys Acta Rev Cancer ; 1867(1): 19-28, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27871965

RESUMO

An increasing number of studies highlight the role of mutant p53 proteins in cancer cell growth and in the worsening of cancer patients' clinical outcome. Autophagy has been widely recognized as a main biological event involved in both the regulation of cancer cell proliferation and in the response of several anticancer drugs. A thorough analysis of scientific literature underlines the reciprocal interplay between mutant p53 proteins and autophagy regulation. In this review, we analytically summarize recent findings, which indicate that gain-of-function (GOF) mutant p53 proteins counteract the autophagic machinery by various molecular mechanisms including the regulation of AMPK and Akt/mTOR pathways, autophagy-related genes (ATGs), HIF-1α target genes, and the mitochondrial citrate carrier CIC. Moreover, we report that mutant p53 protein stability is affected by lysosome-mediated degradation through macroautophagy or chaperone-mediated autophagy, suggesting the use of autophagy stimulators to counteract mutant p53 oncogenic activity. Finally, we discuss the functional role of the interplay between mutant p53 proteins and autophagy in cancer progression, a fundamental knowledge to design more effective therapies against cancers bearing mutant TP53 gene.


Assuntos
Autofagia/genética , Proteínas Mutantes/genética , Mutação/genética , Proteína Supressora de Tumor p53/genética , Proliferação de Células/genética , Humanos
18.
Free Radic Biol Med ; 101: 305-316, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27989750

RESUMO

Several evidence indicate that metabolic alterations play a pivotal role in cancer development. Here, we report that the mitochondrial uncoupling protein 2 (UCP2) sustains the metabolic shift from mitochondrial oxidative phosphorylation (mtOXPHOS) to glycolysis in pancreas cancer cells. Indeed, we show that UCP2 sensitizes pancreas cancer cells to the treatment with the glycolytic inhibitor 2-deoxy-D-glucose. Through a bidimensional electrophoresis analysis, we identify 19 protein species differentially expressed after treatment with the UCP2 inhibitor genipin and, by bioinformatic analyses, we show that these proteins are mainly involved in metabolic processes. In particular, we demonstrate that the antioxidant UCP2 induces the expression of hnRNPA2/B1, which is involved in the regulation of both GLUT1 and PKM2 mRNAs, and of lactate dehydrogenase (LDH) increasing the secretion of L-lactic acid. We further demonstrate that the radical scavenger N-acetyl-L-cysteine reverts hnRNPA2/B1 and PKM2 inhibition by genipin indicating a role for reactive oxygen species in the metabolic reprogramming of cancer cells mediated by UCP2. We also observe an UCP2-dependent decrease in mtOXPHOS complex I (NADH dehydrogenase), complex IV (cytochrome c oxidase), complex V (ATPase) and in mitochondrial oxygen consumption, suggesting a role for UCP2 in the counteraction of pancreatic cancer cellular respiration. All these results reveal novel mechanisms through which UCP2 promotes cancer cell proliferation with the concomitant metabolic shift from mtOXPHOS to the glycolytic pathway.


Assuntos
Proteínas de Transporte/genética , Desoxiglucose/farmacologia , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas de Membrana/genética , Hormônios Tireóideos/genética , Proteína Desacopladora 2/genética , Acetilcisteína/farmacologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Iridoides/farmacologia , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Proteína Desacopladora 2/antagonistas & inibidores , Proteína Desacopladora 2/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
19.
Cancer Lett ; 376(2): 303-9, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27045472

RESUMO

An ever-increasing number of studies highlight the role of mutant p53 proteins in the alteration of cancer cell secretome and in the modification of tumour microenvironment, sustaining an invasive phenotype of cancer cell. The knowledge of the molecular mechanisms underlying the interplay between mutant p53 proteins and the microenvironment is becoming fundamental for the identification of both efficient anticancer therapeutic strategies and novel serum biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells bearing mutant TP53 gene. In particular, we highlight data from available literature, suggesting that mutant p53 proteins are able to (i) alter the secretion of enzymes involved in the modulation of extracellular matrix components; (ii) alter the secretion of inflammatory cytokines; (iii) increase the extracellular acidification; and (iv) regulate the crosstalk between cancer and stromal cells.


Assuntos
Movimento Celular , Mutação , Neoplasias/metabolismo , Microambiente Tumoral , Proteína Supressora de Tumor p53/metabolismo , Animais , Comunicação Celular , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Predisposição Genética para Doença , Humanos , Concentração de Íons de Hidrogênio , Mediadores da Inflamação/metabolismo , Ácido Láctico/metabolismo , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
20.
Neuroscientist ; 21(1): 9-29, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24740577

RESUMO

Evidence has begun emerging for the "contagious" and destructive Aß42 (amyloid-beta42) oligomers and phosphorylated Tau oligomers as drivers of sporadic Alzheimer's disease (AD), which advances along a pathway starting from the brainstem or entorhinal cortex and leading to cognition-related upper cerebral cortex regions. Seemingly, Aß42 oligomers trigger the events generating the neurotoxic Tau oligomers, which may even by themselves spread the characteristic AD neuropathology. It has been assumed that only neurons make and spread these toxic drivers, whereas their associated astrocytes are just janitorial bystanders/scavengers. But this view is likely to radically change since normal human astrocytes freshly isolated from adult cerebral cortex can be induced by exogenous Aß25-35, an Aß42 proxy, to make and secrete increased amounts of endogenous Aß42. Thus, it would seem that the steady slow progression of AD neuropathology along specific cognition-relevant brain networks is driven by both Aß42 and phosphorylated Tau oligomers that are variously released from increasing numbers of "contagion-stricken" members of tightly coupled neuron-astrocyte teams. Hence, we surmise that stopping the oversecretion and spread of the two kinds of "contagious" oligomers by such team members, perhaps via a specific CaSR (Ca(2+)-sensing receptor) antagonist like NPS 2143, might effectively treat AD.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Encéfalo/patologia , Humanos , Neurônios/patologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...