Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005788

RESUMO

Sex segregation increases the cost of Carica papaya production through seed-based propagation. Therefore, in vitro techniques are an attractive option for clonal propagation, especially of hermaphroditic plants. Here, we performed a temporal analysis of the proteome of C. papaya calli aiming to identify the key players involved in embryogenic callus formation. Mature zygotic embryos used as explants were treated with 20 µM 2,4-dichlorophenoxyacetic acid to induce embryogenic callus. Total proteins were extracted from explants at 0 (zygotic embryo) and after 7, 14, and 21 days of induction. A total of 1407 proteins were identified using a bottom-up proteomic approach. The clustering analysis revealed four distinct patterns of protein accumulation throughout callus induction. Proteins related to seed maturation and storage are abundant in the explant before induction, decreasing as callus formation progresses. Carbohydrate and amino acid metabolisms, aerobic respiration, and protein catabolic processes were enriched throughout days of callus induction. Protein kinases associated with auxin responses, such as SKP1-like proteins 1B, accumulated in response to callus induction. Additionally, regulatory proteins, including histone deacetylase (HD2C) and argonaute 1 (AGO1), were more abundant at 7 days, suggesting their role in the acquisition of embryogenic competence. Predicted protein-protein networks revealed the regulatory role of proteins 14-3-3 accumulated during callus induction and the association of proteins involved in oxidative phosphorylation and hormone response. Our findings emphasize the modulation of the proteome during embryogenic callus initiation and identify regulatory proteins that might be involved in the activation of this process.

2.
Front Plant Sci ; 14: 1098401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925749

RESUMO

The zinc/iron-regulated transporter-like protein (ZIP) gene family first identified in plants is highly distributed in the plant kingdom. This family has previously been reported to transport several essential and non-essential cationic elements, including those toxic to many economically important crops such as cacao (Theobroma cacao L.). In this article, we present a detailed study on physicochemical properties, evolution, duplication, gene structure, promoter region and TcZIP family three-dimensional protein structure. A total of 11 TcZIP genes have been identified to encode proteins from 309 to 435 aa, with localization in the plasma membrane and chloroplast, containing 6-9 putative domains (TM). Interspecies phylogenetic analysis subdivided the ZIP proteins into four groups. Segmental duplication events significantly contributed to the expansion of TcZIP genes. These genes underwent high pressure of purifying selection. The three-dimensional structure of the proteins showed that α helix conformations are predominant with several pocket sites, containing the metal binding site, with the residues leucine (LEU), alanine (ALA), glycine (GLY), serine (SER), lysine (LYS) and histidine (HIS) the most predicted. Regarding the analysis of the protein-protein interaction and enrichment of the gene ontology, four biological processes were assigned, the most important being the cation transport. These new discoveries expand the knowledge about the function, evolution, protein structures and interaction of ZIP family proteins in cacao and contribute to develop cacao genotypes enriched with important mineral nutrients as well as genotypes that bioaccumulate or exclude toxic metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...