Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 11: 209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273856

RESUMO

It is well established that alterations in cognitive function and damage to brain structures are often found in adolescents who have substance use disorder (SUD). However, deficits in executive cognitive functioning in adolescents related to the vulnerability and consumption of such substances are not well known. In this study, we use graph theoretic analysis to compare the network efficiency in the resting state for three networks-default mode network (DMN), salience network (SN) and fronto-parietal network (FPN)-between inhalant-consuming adolescents and a control group (12 to 17 years old). We analyzed whether the efficiency of these functional networks was related to working memory, mental flexibility, inhibition of response, and sequential planning. We found that, when compared to the control group, inhalant-consuming adolescents presented with important deficits in communication among brain regions that comprise the DMN, SN, and FPN networks. DMN is the most affected network by inhalant abuse during adolescence. The mediation analyses suggested that the relationship between inhalant abuse and inhibitory control and sequential planning was partly mediated by DMN efficiency.

2.
PLoS One ; 10(3): e0120431, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798591

RESUMO

Potassium channels allow the selective flux of K⁺ excluding the smaller, and more abundant in the extracellular solution, Na⁺ ions. Here we show that Shab is a typical K⁺ channel that excludes Na⁺ under bi-ionic, Na(o)/K(i) or Na(o)/Rb(i), conditions. However, when internal K⁺ is replaced by Cs⁺ (Na(o)/Cs(i)), stable inward Na⁺ and outward Cs⁺ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca²âº ions, and compare the effect that internal K⁺ replacement exerts on both Ca²âº and TEA block. Our observations indicate that Ca²âº blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na⁺ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca²âº is probably coordinated by main chain carbonyls of the pore's first K⁺-binding site.


Assuntos
Cálcio/farmacologia , Potássio/metabolismo , Canais de Potássio Shab/antagonistas & inibidores , Animais , Sítios de Ligação/efeitos dos fármacos , Césio/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Permeabilidade/efeitos dos fármacos , Porosidade , Bloqueadores dos Canais de Potássio , Quinidina/farmacologia , Células Sf9 , Canais de Potássio Shab/química , Canais de Potássio Shab/metabolismo , Sódio/metabolismo , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...