Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37260007

RESUMO

In various types of many-particle systems, bidispersity is frequently used to avoid spontaneous ordering in particle configurations. In this study, the relation between bidispersity and disorder degree of particle configurations is investigated. By using magnetic dipole-dipole interaction, magnet particles are dispersed in a two-dimensional cell without any physical contact between them. In this magnetic system, bidispersity is introduced by mixing large and small magnets. Then, the particle system is compressed to produce a uniform particle configuration. The compressed particle configuration is analyzed by using Voronoi tessellation for evaluating the disorder degree, which strongly depends on bidispersity. Specifically, the standard deviation and skewness of the Voronoi cell area distribution are measured. As a result, we find that the peak of standard deviation is observed when the numbers of large and small particles are almost identical. Although the skewness shows a non-monotonic behavior, a zero skewness state (symmetric distribution) can be achieved when the numbers of large and small particles are identical. In this ideally random (disordered) state, the ratio between pentagonal, hexagonal, and heptagonal Voronoi cells becomes roughly identical, while hexagons are dominant under monodisperse (ordered) conditions. The relation between Voronoi cell analysis and the global bond orientational order parameter is also discussed.

2.
J Chem Phys ; 157(24): 244504, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36586975

RESUMO

We investigate the structural relaxation of a soft-sphere liquid quenched isochorically (ϕ = 0.7) and instantaneously to different temperatures Tf above and below the glass transition. For this, we combine extensive Brownian dynamics simulations and theoretical calculations based on the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory. The response of the liquid to a quench generally consists of a sub-linear increase of the α-relaxation time with system's age. Approaching the ideal glass-transition temperature from above (Tf > Ta), sub-aging appears as a transient process describing a broad equilibration crossover for quenches to nearly arrested states. This allows us to empirically determine an equilibration timescale teq(Tf) that becomes increasingly longer as Tf approaches Ta. For quenches inside the glass (Tf ≤ Ta), the growth rate of the structural relaxation time becomes progressively larger as Tf decreases and, unlike the equilibration scenario, τα remains evolving within the whole observation time-window. These features are consistently found in theory and simulations with remarkable semi-quantitative agreement and coincide with those revealed in a previous and complementary study [P. Mendoza-Méndez et al., Phys. Rev. 96, 022608 (2017)] that considered a sequence of quenches with fixed final temperature Tf = 0 but increasing ϕ toward the hard-sphere dynamical arrest volume fraction ϕHS a=0.582. The NE-SCGLE analysis, however, unveils various fundamental aspects of the glass transition, involving the abrupt passage from the ordinary equilibration scenario to the persistent aging effects that are characteristic of glass-forming liquids. The theory also explains that, within the time window of any experimental observation, this can only be observed as a continuous crossover.


Assuntos
Vidro , Simulação de Dinâmica Molecular , Temperatura , Temperatura de Transição , Vidro/química
3.
Phys Rev Lett ; 127(20): 204501, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860033

RESUMO

We report on the collision-coalescence dynamics of drops in Leidenfrost state using liquids with different physicochemical properties. Drops of the same liquid deposited on a hot concave surface coalesce practically at contact, but when drops of different liquids collide, they can bounce several times before finally coalescing when the one that evaporates faster reaches a size similar to its capillary length. The bouncing dynamics is produced because the drops are not only in Leidenfrost state with the substrate, they also experience Leidenfrost effect between them at the moment of collision. This happens due to their different boiling temperatures, and therefore, the hotter drop works as a hot surface for the drop with lower boiling point, producing three contact zones of Leidenfrost state simultaneously. We called this scenario the triple Leidenfrost effect.

4.
J Colloid Interface Sci ; 574: 285-292, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32334293

RESUMO

HYPOTHESIS: A water jet penetrating into a water pool produces air entrainment and bubbles that rise to the surface and disintegrate. A similar scenario can be expected when a granular jet enters into water. This phenomenon is common in natural and industrial processes but remains so far unexplored. EXPERIMENTS: A collimated jet of monodisperse silica beads was poured into water and the process was filmed with a high-speed camera. The grain size, jet impact velocity, and the liquid physical properties were systematically varied. FINDINGS: For grains of ~50-300µm in diameter, the granular jet deforms the air-water interface, penetrates the pool and produces air entrainment. Most of the entrained air is contained in the interstitial space of the jet, and its volume is linearly proportional to the volume of grains. The bubbles formed in this process are covered by a layer of grains attached to the bubble air-water interface due to capillary-induced cohesion. These "granular bubbles" are stable over time because the granular shell prevents coalescence and keeps the air encapsulated, either if the bubbles rise to the surface or sink to the bottom of the pool, which is determined by the competition of the buoyancy and the weight of the assembly.

5.
Phys Rev Lett ; 122(16): 164501, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31075016

RESUMO

The impact of a spherical projectile on an evened-out granular bed generates a uniform ejecta of material and a crater with a raised circular rim. Recently, Sabuwala et al. [Phys. Rev. Lett. 120, 264501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.264501] found that the uniform blanket of ejecta changes to a set of radial streaks when a spherical body impacts on an undulated granular surface, being a plausible explanation to the enigmatic ray systems on planetary bodies. Here, we show that ray systems can also be generated by the impact of nonspherical projectiles on a flat granular surface. This is a reasonable explanation considering that meteorites are rarely spherical. Moreover, by impacting bodies of different geometries, we show that the crater size follows the same power-law scaling with the impact energy found for spherical projectiles, and the crater rim becomes circular as the impact energy is increased regardless of the projectile shape, which helps to understand why most impact craters in nature are rounded.

6.
Phys Rev E ; 99(3-1): 030901, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999424

RESUMO

This Rapid Communication reports on an experimental study of granular craters formed by a mechanism, namely, optical energy, via a pulsed laser focused onto the surface of a granular bed. This represents an insight into granular cratering for two reasons; first, there is no physical contact between the initiation mechanism and the granular media (as typical for impact or explosion craters). Second, the resulting craters are millimetric in scale, which facilitates a test of energy scalings down to a previously unobserved lengthscale. Indeed, we observe a range of energy scalings conforming to D_{c}∼E^{ß} with ß≈0.31-0.43 depending on the characteristics of the granular media.

7.
Phys Rev E ; 96(2-1): 022901, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950576

RESUMO

When rough grains in loose packing conditions are discharged from a silo, a conical depression with a single slope is formed at the surface. We observed that the increase of volume fraction generates a more complex depression, characterized by two angles of discharge: one at the bottom similar to the angle of repose and a considerably larger upper angle. The change in slope appears at the boundary between a dense stagnant region at the periphery and the central flowing channel formed over the aperture. Since the material in the latter zone is always fluidized, the flow rate is unaffected by the initial packing of the bed. On the other hand, the contrast between both angles is markedly smaller when smooth particles of the same size and density are used, which reveals that high packing fraction and friction must combine to produce the observed geometry. Our results show that the surface profile helps to identify by simple visual inspection the packing conditions of a granular bed, being useful to prevent undesirable collapses during silo discharge in industry.

8.
Phys Rev E ; 96(3-1): 032904, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29346862

RESUMO

We report on an experimental investigation of craters generated by explosions at the surface of a model granular bed. Following the initial blast, a pressure wave propagates through the bed, producing high-speed ejecta of grains and ultimately a crater. We analyzed the crater morphology in the context of large-scale explosions and other cratering processes. The process was analyzed in the context of large-scale explosions, and the crater morphology was compared with those resulting from other cratering processes in the same energy range. From this comparison, we deduce that craters formed through different mechanisms can exhibit fine surface features depending on their origin, at least at the laboratory scale. Moreover, unlike laboratory-scale craters produced by the impact of dense spheres, the diameter and depth do not follow a 1/4-power-law scaling with energy, rather the exponent observed herein is approximately 0.30, as has also been found in large-scale events. Regarding the ejecta curtain of grains, its expansion obeys the same time dependence followed by shock waves produced by underground explosions. Finally, from experiments in a two-dimensional system, the early cavity growth is analyzed and compared to a recent study on explosions at the surface of water.

9.
Phys Rev E ; 96(3-1): 030901, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29347017

RESUMO

An intruder penetrating into a granular column experiences a depth-dependent friction force F(z). Different regimes of F(z) have been measured depending on the experimental design: a nearly linear dependence for shallow penetrations, total saturation at large depths, and an exponential increase when the intruder approaches the bottom of the granular bed. We report here an experiment that allows us to measure the different regimes in a single run during the quasistatic descent of a sphere in a light granular medium. From the analysis of the resistance in the saturation zone, it was found that F(z) follows a cube-power-law dependence on the intruder diameter and an exponential increase with the packing fraction of the bed. Moreover, we determine the critical mass m_{c} required to observe infinite penetration and its dependence on the above parameters. Finally, we use our results to estimate the final penetration depth reached by intruders of masses m

10.
Phys Rev Lett ; 115(2): 028001, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207506

RESUMO

We study experimentally the cratering process due to the explosion and collapse of a pressurized air cavity inside a sand bed. The process starts when the cavity breaks and the liberated air then rises through the overlying granular layer and produces a violent eruption; it depressurizes the cavity and, as the gas is released, the sand sinks under gravity, generating a crater. We find that the crater dimensions are totally determined by the cavity volume; the pressure does not affect the morphology because the air is expelled vertically during the eruption. In contrast with impact craters, the rim is flat and, regardless of the cavity shape, it evolves into a circle as the cavity depth increases or if the chamber is located deep enough inside the bed, which could explain why most of the subsidence craters observed in nature are circular. Moreover, for shallow spherical cavities, a collimated jet emerges from the collision of sand avalanches that converge concentrically at the bottom of the depression, revealing that collapse under gravity is the main mechanism driving the jet formation.

11.
Phys Rev Lett ; 113(11): 118001, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25260006

RESUMO

We study experimentally how the bouncing dynamics of a hollow ball on a vibrating plate is modified when it is partially filled with liquid or grains. Whereas empty and liquid-filled balls display a dominant chaotic dynamics, a ball with grains exhibits a rich variety of stationary states, determined by the grain size and filling volume. In the collisional regime, i.e., when the energy injected to the system is mainly dissipated by interparticle collisions, an unexpected period-1 orbit appears independently of the vibration conditions, over a wide range. This is a self-regulated state driven by the formation and collapse of a granular gas within the ball during one cycle. In the frictional regime (dissipation dominated by friction), the grains move collectively and generate different patterns and steady modes: oscillons, waves, period doubling, etc. From a phase diagram and a geometrical analysis, we deduce that these modes are the result of a coupling (synchronization) between the vibrating plate frequency and the trajectory followed by the particles inside the cavity.

12.
Artigo em Inglês | MEDLINE | ID: mdl-24125260

RESUMO

Interesting collective motion emerges when several heavy intruder disks fall in a loose packed, quasi-two-dimensional granular bed of extremely light grains [F. Pacheco-Vázquez and J. C. Ruiz-Suárez, Nat. Commun. 1, 123 (2010)]. In particular, when two disks impact side by side, they initially repel and then they attract each other until they finally stop. Here we perform experiments and discrete-element soft-particle simulations to determine the range of action and the origin of these attractive and repulsive flow-mediated forces. We find that (1) the drag force on the disks fluctuate with a characteristic length linked to force chains that build up and break; (2) the repulsive force is present when the separation of the intruder disks is less than 6 times the size of the grains of the granular bed, which is the size of an aperture that allows a continuous discharge flow from a container; (3) the attractive force has a range of action between 5 and 6 times the size of the intruder disks; and (4) attraction exists only when intruders move faster than 1 m/s. These results suggest that repulsion originates from jamming of grains between intruders, and it supports the idea that attraction could be due to a "granular pressure" drop in the region between intruders caused by a high flow velocity of grains: a Bernoulli-like effect. However, our results do not rule out other mechanisms of interaction, like fluctuation-induced forces.

13.
Sci Rep ; 3: 2158, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23835468

RESUMO

A ball dropped over a solid surface bounces several times before a complete stop. The bouncing can be reduced by introducing a liquid into the ball; however, the first rebound remains largely unaffected by the fluid. Granular materials can also work as dampers. We investigated the rebound of a container partially filled with a given mass of grains mi. During the collision, the kinetic energy of the container is partially transferred to the grains, the rebound is damped, and the fast energy dissipation through inter-particle collisions and friction decreases the bouncing time dramatically. For grain-filled cylinders, a completely inelastic collision (zero rebound) is obtained when mi ≥ 1.5εomc, where εo and mc are the coefficient of restitution and mass of the empty container. For grain-filled spheres, the first rebound is almost undamped, but the second collision is completely inelastic if mi ≫ mc. These findings are potentially useful to design new granular damping systems.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 1): 051303, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23214775

RESUMO

We study the spontaneous formation of granular towers produced when dry sand is poured on a wet sand bed. When the liquid content of the bed exceeds a threshold value W*, the impacting grains have a nonzero probability to stick on the wet grains due to instantaneous liquid bridges created during the impact. The trapped grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow towers. The growth velocity is determined by the surface liquid content which decreases exponentially as the tower height augments. This self-assembly mechanism (only observed in the funicular and capillary regimes) could theoretically last while the capillary rise of water is possible; however, the structure collapses before reaching this limit. The collapse occurs when the weight of the tower surpasses the cohesive stress at its base. The cohesive stress increases as the liquid content of the bed is reduced. Consequently, the highest towers are found just above W*.


Assuntos
Coloides/química , Modelos Químicos , Modelos Moleculares , Dióxido de Silício/química , Simulação por Computador , Tamanho da Partícula , Propriedades de Superfície
15.
Phys Rev Lett ; 107(21): 218001, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181927

RESUMO

Impact experiments in granular media are usually performed with solid projectiles that do not fragment at all. Contrastingly, we study here the morphology produced by the impact of spherical granular projectiles whose structure is utterly lost after collision. Simple and complex craters are observed, depending on the packing fraction of the balls. Their diameters D and depths z are analyzed as a function of the drop height h. We find the same power law D ∝ h(1/4) obtained with solid spheres, but a discontinuity at a certain threshold height, related to the cohesive energy of the projectiles, shows up. Counterintuitively, instead of a monotonic increase with the collisional energy, z becomes constant above this threshold.

16.
Phys Rev Lett ; 106(21): 218001, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699343

RESUMO

An object falling in a fluid reaches a terminal velocity when the drag force and its weight are balanced. Contrastingly, an object impacting into a granular medium rapidly dissipates all its energy and comes to rest always at a shallow depth. Here we study, experimentally and theoretically, the penetration dynamics of a projectile in a very long silo filled with expanded polystyrene particles. We discovered that, above a critical mass, the projectile reaches a terminal velocity and, therefore, an endless penetration.

17.
Nat Commun ; 1: 123, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21119636

RESUMO

An object moving in a fluid experiences a drag force that depends on its velocity, shape and the properties of the medium. From this simplest case to the motion of a flock of birds or a school of fish, the drag forces and the hydrodynamic interactions determine the full dynamics of the system. Similar drag forces appear when a single projectile impacts and moves through a granular medium, and this case is well studied in the literature. On the other hand, the case in which a group of intruders impact a granular material has never been considered. Here, we study the simultaneous penetration of several intruders in a very low-density granular medium. We find that the intruders move through it in a collective way, following a cooperative dynamics, whose complexity resembles flocking phenomena in living systems or the movement of reptiles in sand, wherein changes in drag are exploited to efficiently move or propel.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(1 Pt 1): 011301, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20365362

RESUMO

Acoustic gaps are normally observed in granular inhomogeneous structures made of composite materials. The modulation of the elastic properties in such media creates the coherent effects of scattering and interference that ultimately lead to frequency intervals where sound propagation is forbidden. Contrastingly, we report here an experimental observation of acoustic gaps in homogeneous media; specifically, in granular chains. The beads used in our study are magnetic. Therefore, instead of modulating the elastic properties of the chain, we modulate the magnetization (i.e., the contact forces). We also observe that the propagation speed of acoustic signals through the magnetic chains used in this study is at odds with the speed predicted by Hertz's law.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 1): 031304, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21230066

RESUMO

We investigate the dynamics of a disk shaped intruder sliding on a granular monolayer. The monolayer is on an inclined transparent plane, tilted at an angle much smaller than the angle of avalanche. A high speed camera allows us to measure the dynamics of both, the intruder (filming from top) and the grains (filming from below). We find a frictional force with a dependence on the speed of the intruder. Moreover, calculating a Reynolds-like number, it is possible to highlight the influence of the density of the beads that form the monolayer on the dynamics of the disk. We also find that the fluidization produced by the intruder's action reduces substantially the effective friction coefficient.

20.
Phys Rev Lett ; 102(17): 170601, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19518769

RESUMO

Some materials remain solids even if they are heated beyond the temperature of their melting points. In condensed matter physics, this rare phenomenon is called superheating. Here we report the analogous phenomenon in granular matter: a strongly vibrated monolayer that instead of being a gas persists as a crystal for some time. Eventually, it spontaneously evaporates. We found that the system has thermodynamiclike features like coexistence and metastability. We show how the observed metastable phase is linked to energy dissipation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...