Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696239

RESUMO

The reconstruction of complete microbial metabolic pathways using 'omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.


Assuntos
Genoma Bacteriano , Redes e Vias Metabólicas , Software , Redes e Vias Metabólicas/genética , Biologia Computacional/métodos , Aprendizado de Máquina , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366040

RESUMO

Deep-sea hydrothermal vent geochemistry shapes the foundation of the microbial food web by fueling chemolithoautotrophic microbial activity. Microbial eukaryotes (or protists) play a critical role in hydrothermal vent food webs as consumers and hosts of symbiotic bacteria, and as a nutritional source to higher trophic levels. We measured microbial eukaryotic cell abundance and predation pressure in low-temperature diffuse hydrothermal fluids at the Von Damm and Piccard vent fields along the Mid-Cayman Rise in the Western Caribbean Sea. We present findings from experiments performed under in situ pressure that show cell abundances and grazing rates higher than those done at 1 atmosphere (shipboard ambient pressure); this trend was attributed to the impact of depressurization on cell integrity. A relationship between the protistan grazing rate, prey cell abundance, and temperature of end-member hydrothermal vent fluid was observed at both vent fields, regardless of experimental approach. Our results show substantial protistan biomass at hydrothermally fueled microbial food webs, and when coupled with improved grazing estimates, suggest an important contribution of grazers to the local carbon export and supply of nutrient resources to the deep ocean.


Assuntos
Fontes Hidrotermais , Animais , Biomassa , Fontes Hidrotermais/microbiologia , Comportamento Predatório , Filogenia , Bactérias/genética
3.
Environ Microbiol ; 26(1): e16563, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151777

RESUMO

Plastic substrates introduced to the environment during the Anthropocene have introduced new pathways for microbial selection and dispersal. Some plastic-colonising microorganisms have adapted phenotypes for plastic degradation (selection), while the spatial transport (dispersal) potential of plastic colonisers remains controlled by polymer-specific density, hydrography and currents. Plastic-degrading enzyme abundances have recently been correlated with concentrations of plastic debris in open ocean environments, making it critical to better understand colonisation of hydrocarbon degraders with plastic degradation potential in urbanised watersheds where plastic pollution often originates. We found that microbial colonisation by reputed hydrocarbon degraders on microplastics (MPs) correlated with a spatial contaminant gradient (New York City/Long Island waterways), polymer types, temporal scales, microbial domains and putative cell activity (DNA vs. RNA). Hydrocarbon-degrading taxa enriched on polyethylene and polyvinyl chloride substrates relative to other polymers and were more commonly recovered in samples proximal to New York City. These differences in MP colonisation could indicate phenotypic adaptation processes resulting from increased exposure to urban plastic runoff as well as differences in carbon bioavailability across polymer types. Shifts in MP community potential across urban coastal contaminant gradients and polymer types improve our understanding of environmental plastic discharge impacts toward biogeochemical cycling across the global ocean.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluição Ambiental , Polietileno , Hidrocarbonetos , Monitoramento Ambiental
4.
mBio ; : e0167623, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947402

RESUMO

Metagenomics is a powerful method for interpreting the ecological roles and physiological capabilities of mixed microbial communities. Yet, many tools for processing metagenomic data are neither designed to consider eukaryotes nor are they built for an increasing amount of sequence data. EukHeist is an automated pipeline to retrieve eukaryotic and prokaryotic metagenome-assembled genomes (MAGs) from large-scale metagenomic sequence data sets. We developed the EukHeist workflow to specifically process large amounts of both metagenomic and/or metatranscriptomic sequence data in an automated and reproducible fashion. Here, we applied EukHeist to the large-size fraction data (0.8-2,000 µm) from Tara Oceans to recover both eukaryotic and prokaryotic MAGs, which we refer to as TOPAZ (Tara Oceans Particle-Associated MAGs). The TOPAZ MAGs consisted of >900 environmentally relevant eukaryotic MAGs and >4,000 bacterial and archaeal MAGs. The bacterial and archaeal TOPAZ MAGs expand upon the phylogenetic diversity of likely particle- and host-associated taxa. We use these MAGs to demonstrate an approach to infer the putative trophic mode of the recovered eukaryotic MAGs. We also identify ecological cohorts of co-occurring MAGs, which are driven by specific environmental factors and putative host-microbe associations. These data together add to a number of growing resources of environmentally relevant eukaryotic genomic information. Complementary and expanded databases of MAGs, such as those provided through scalable pipelines like EukHeist, stand to advance our understanding of eukaryotic diversity through increased coverage of genomic representatives across the tree of life.IMPORTANCESingle-celled eukaryotes play ecologically significant roles in the marine environment, yet fundamental questions about their biodiversity, ecological function, and interactions remain. Environmental sequencing enables researchers to document naturally occurring protistan communities, without culturing bias, yet metagenomic and metatranscriptomic sequencing approaches cannot separate individual species from communities. To more completely capture the genomic content of mixed protistan populations, we can create bins of sequences that represent the same organism (metagenome-assembled genomes [MAGs]). We developed the EukHeist pipeline, which automates the binning of population-level eukaryotic and prokaryotic genomes from metagenomic reads. We show exciting insight into what protistan communities are present and their trophic roles in the ocean. Scalable computational tools, like EukHeist, may accelerate the identification of meaningful genetic signatures from large data sets and complement researchers' efforts to leverage MAG databases for addressing ecological questions, resolving evolutionary relationships, and discovering potentially novel biodiversity.

5.
Nat Commun ; 14(1): 656, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746960

RESUMO

Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.


Assuntos
Microbiota , Água do Mar , Água do Mar/microbiologia , Bactérias/metabolismo , Metagenoma , Microbiota/genética , Água/metabolismo
6.
Environ Microbiol ; 24(4): 1818-1834, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35315564

RESUMO

Protists are integral to marine food webs and biogeochemical cycles; however, there is a paucity of data describing specific ecological niches for some of the most abundant taxa in marker gene libraries. Syndiniales are one such group, often representing the majority of sequence reads recovered from picoplankton samples across the global ocean. However, the prevalence and impacts of syndinian parasitism in marine environments remain unclear. We began to address these critical knowledge gaps by generating a high-resolution time series (March-October 2018) in a productive coastal pond. Seasonal shifts in protist populations, including parasitic Syndiniales, were documented during periods of higher primary productivity and increased summer temperature-driven stratification. Elevated concentrations of infected hosts and free-living parasite spores occurred at nearly monthly intervals in July, August, and September. We suggest intensifying stratification during this period correlated with the increased prevalence of dinoflagellates that were parasitized by Group II Syndiniales. Infections in some protist populations were comparable to previously reported large single-taxon dinoflagellate blooms. Infection dynamics in Salt Pond demonstrated the propagation of syndinian parasites through mixed protist assemblages and highlighted patterns of host/parasite interactions that better reflect many other marine environments where single taxon blooms are uncommon.


Assuntos
Dinoflagellida , Doenças Parasitárias , Dinoflagellida/genética , Ecossistema , Interações Hospedeiro-Parasita , Humanos , Lagoas
7.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266956

RESUMO

Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web that functions in the absence of sunlight, but the role of protistan grazers in these highly productive ecosystems is largely unexplored. Here, we pair grazing experiments with a molecular survey to quantify protistan grazing and to characterize the composition of vent-associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the northeast Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to the surrounding deep seawater environment and may account for consuming 28 to 62% of the daily stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated protistan community was more species rich relative to the background deep sea, and patterns in the distribution and co-occurrence of vent microbes provide additional insights into potential predator-prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and stramenopiles, dominated the vent protistan community and included bacterivorous species, species known to host symbionts, and parasites. Our findings provide an estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse protistan communities play in deep-sea carbon cycling.


Assuntos
Bactérias/isolamento & purificação , Carbono/metabolismo , Eucariotos/fisiologia , Fontes Hidrotermais/parasitologia , Microbiota , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Ciclo do Carbono , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Fontes Hidrotermais/microbiologia , Oceano Pacífico , Filogenia , Água do Mar/microbiologia , Água do Mar/parasitologia
8.
Front Microbiol ; 12: 764605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069470

RESUMO

Oxygen-depleted water columns (ODWCs) host a diverse community of eukaryotic protists that change dramatically in composition over the oxic-anoxic gradient. In the permanently anoxic Cariaco Basin, peaks in eukaryotic diversity occurred in layers where dark microbial activity (chemoautotrophy and heterotrophy) were highest, suggesting a link between prokaryotic activity and trophic associations with protists. Using 18S rRNA gene sequencing, parasites and especially the obligate parasitic clade, Syndiniales, appear to be particularly abundant, suggesting parasitism is an important, but overlooked interaction in ODWC food webs. Syndiniales were also associated with certain prokaryotic groups that are often found in ODWCs, including Marinimicrobia and Marine Group II archaea, evocative of feedbacks between parasitic infection events, release of organic matter, and prokaryotic assimilative activity. In a network analysis that included all three domains of life, bacterial and archaeal taxa were putative bottleneck and hub species, while a large proportion of edges were connected to eukaryotic nodes. Inclusion of parasites resulted in a more complex network with longer path lengths between members. Together, these results suggest that protists, and especially protistan parasites, play an important role in maintaining microbial food web complexity, particularly in ODWCs, where protist diversity and microbial productivity are high, but energy resources are limited relative to euphotic waters.

9.
Environ Microbiol ; 23(6): 2747-2764, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32761757

RESUMO

Genetic markers and geochemical assays of microbial nitrogen cycling processes, including autotrophic and heterotrophic denitrification, anammox, ammonia oxidation, and nitrite oxidation, were examined across the oxycline, suboxic, and anoxic zones of the Cariaco Basin, Venezuela. Ammonia and nitrite oxidation genes were expressed through the entire gradient. Transcripts associated with autotrophic and heterotrophic denitrifiers were mostly confined to the suboxic zone and below but were also present in particles in the oxycline. Anammox genes and transcripts were detected over a narrow depth range near the bottom of the suboxic zone and coincided with secondary NO2 - maxima and available NH4 + . Dissolved inorganic nitrogen (DIN) amendment incubations and comparisons between our sampling campaigns suggested that denitrifier activity may be closely coupled with NO3 - availability. Expression of denitrification genes at depths of high rates of chemoautotrophic carbon fixation and phylogenetic analyses of nitrogen cycling genes and transcripts indicated a diverse array of denitrifiers, including chemoautotrophs capable of using NO3 - to oxidize reduced sulfur species. Thus, results suggest that the Cariaco Basin nitrogen cycle is influenced by autotrophic carbon cycling in addition to organic matter oxidation and anammox.


Assuntos
Nitrogênio , Oxigênio , Reatores Biológicos , Crescimento Quimioautotrófico , Desnitrificação , Ciclo do Nitrogênio , Oxirredução , Filogenia
10.
Environ Microbiol ; 22(9): 3950-3967, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32743889

RESUMO

The lithified oceanic crust, lower crust gabbros in particular, has remained largely unexplored by microbiologists. Recently, evidence for heterogeneously distributed viable and transcriptionally active autotrophic and heterotrophic microbial populations within low-biomass communities was found down to 750 m below the seafloor at the Atlantis Bank Gabbro Massif, Indian Ocean. Here, we report on the diversity, activity and adaptations of fungal communities in the deep oceanic crust from ~10 to 780 mbsf by combining metabarcoding analyses with mid/high-throughput culturing approaches. Metabarcoding along with culturing indicate a low diversity of viable fungi, mostly affiliated to ubiquitous (terrestrial and aquatic environments) taxa. Ecophysiological analyses coupled with metatranscriptomics point to viable and transcriptionally active fungal populations engaged in cell division, translation, protein modifications and other vital cellular processes. Transcript data suggest possible adaptations for surviving in the nutrient-poor, lithified deep biosphere that include the recycling of organic matter. These active communities appear strongly influenced by the presence of cracks and veins in the rocks where fluids and resulting rock alteration create micro-niches.


Assuntos
Adaptação Fisiológica , Fungos/fisiologia , Sedimentos Geológicos/microbiologia , Micobioma/genética , Água do Mar/microbiologia , Biodiversidade , Ciclo do Carbono , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Sedimentos Geológicos/química , Oceano Índico , Água do Mar/química
11.
ISME J ; 14(12): 3079-3092, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32801311

RESUMO

Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe-S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.


Assuntos
Vírus , Ecossistema , Prófagos , Enxofre
12.
Front Microbiol ; 11: 376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226422

RESUMO

Bacterial candidate phylum PAUC34f was originally discovered in marine sponges and is widely considered to be composed of sponge symbionts. Here, we report 21 single amplified genomes (SAGs) of PAUC34f from a variety of environments, including the dark ocean, lake sediments, and a terrestrial aquifer. The diverse origins of the SAGs and the results of metagenome fragment recruitment suggest that some PAUC34f lineages represent relatively abundant, free-living cells in environments other than sponge microbiomes, including the deep ocean. Both phylogenetic and biogeographic patterns, as well as genome content analyses suggest that PAUC34f associations with hosts evolved independently multiple times, while free-living lineages of PAUC34f are distinct and relatively abundant in a wide range of environments.

13.
Cell ; 179(7): 1623-1635.e11, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31835036

RESUMO

Marine bacteria and archaea play key roles in global biogeochemistry. To improve our understanding of this complex microbiome, we employed single-cell genomics and a randomized, hypothesis-agnostic cell selection strategy to recover 12,715 partial genomes from the tropical and subtropical euphotic ocean. A substantial fraction of known prokaryoplankton coding potential was recovered from a single, 0.4 mL ocean sample, which indicates that genomic information disperses effectively across the globe. Yet, we found each genome to be unique, implying limited clonality within prokaryoplankton populations. Light harvesting and secondary metabolite biosynthetic pathways were numerous across lineages, highlighting the value of single-cell genomics to advance the identification of ecological roles and biotechnology potential of uncultured microbial groups. This genome collection enabled functional annotation and genus-level taxonomic assignments for >80% of individual metagenome reads from the tropical and subtropical surface ocean, thus offering a model to improve reference genome databases for complex microbiomes.


Assuntos
Metagenoma , Microbiota , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Metabolismo Energético , Metagenômica/métodos , Filogeografia , Plâncton , Análise de Célula Única/métodos , Transcriptoma
14.
Front Microbiol ; 10: 1262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244796

RESUMO

Phage-host interactions likely play a major role in the composition and functioning of many microbiomes, yet remain poorly understood. Here, we employed single cell genomics to investigate phage-host interactions in a diffuse-flow, low-temperature hydrothermal vent that may be reflective of a broadly distributed biosphere in the subseafloor. We identified putative prophages in 13 of 126 sequenced single amplified genomes (SAGs), with no evidence for lytic infections, which is in stark contrast to findings in the surface ocean. Most were distantly related to known prophages, while their hosts included bacterial phyla Campylobacterota, Bacteroidetes, Chlorobi, Proteobacteria, Lentisphaerae, Spirochaetes, and Thermotogae. Our results suggest the predominance of lysogeny over lytic interaction in diffuse-flow, deep-sea hydrothermal vents, despite the high activity of the dominant Campylobacteria that would favor lytic infections. We show that some of the identified lysogens have co-evolved with their host over geological time scales and that their genes are transcribed in the environment. Functional annotations of lysogeny-related genes suggest involvement in horizontal gene transfer enabling host's protection against toxic metals and antibacterial compounds.

15.
Proc Natl Acad Sci U S A ; 115(3): E400-E408, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29255014

RESUMO

The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted for 23% of identified protein sequences in the lower euphotic and ∼39% in the bathypelagic layer, indicating the central role of heterotrophy in the dark ocean. In the bathypelagic layer, substrate affinities of expressed transporters suggest that, in addition to amino acids, peptides and carbohydrates, carboxylic acids and compatible solutes may be essential substrates for the microbial community. Key players with highest expression of solute transporters were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria, accounting for 40%, 11%, and 10%, respectively, of relative protein abundances. The in situ expression of solute transporters indicates that the heterotrophic prokaryotic community is geared toward the utilization of similar organic compounds throughout the water column, with yet higher abundances of transporters targeting aromatic compounds in the bathypelagic realm.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteômica/métodos , Microbiologia da Água , Archaea/genética , Oceano Atlântico , Bactérias/genética , Biodiversidade , Genoma Arqueal , Genoma Bacteriano , Metagenômica , Água do Mar
16.
Environ Microbiol ; 20(2): 693-712, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29160034

RESUMO

Using the anoxic Cariaco Basin as a natural laboratory, particle association of bacterial and archaeal taxa was assessed by iTag sequencing and qPCR gene assays of samples spanning an oxic-anoxic-euxinic gradient. A total of 10%-12% of all bacterial and archaeal cells were found in the particle-associated (PA) fraction, operationally defined as prokaryotes captured on 2.7 µm membranes. Both redox condition and size fraction segregated bacterial taxa. Archaeal taxa varied according to redox conditions, but were similar between size fractions. Taxa putatively associated with chemoautotrophic sulfur oxidation and nitrification dominated the free-living (FL) fraction throughout the oxycline (< 1-120 µM O2 ) and upper anoxic layer. Bacteria in the oxycline's PA fraction included taxa known to be aerobic and anaerobic chemoorganotrophs. At shallow anoxic depths, PA taxa were primarily affiliated with anaerobic sulfate ( SO42-)-reducing lineages. PA fractions in the most sulfidic samples were dominated by taxa affiliated with CH4 oxidizing, fermenting and SO42- reducing lineages. Prevalence of particle-associated SO42--reducing taxa and abundant sulfur-oxidizing taxa in both size fractions across the oxic-anoxic interface is consistent with the cryptic sulfur cycling concept. Bacterial assemblage diversity in the PA fraction always exceeded the FL fraction except in the most oxic samples, whereas Archaeal diversity was not consistently different between size fractions. Our results suggest that these particle-associated and free-living bacterial assemblages are functionally different and that the interplay between particle microhabitats and surrounding geochemical regimes is a strong selective force shaping microbial communities throughout the water column.


Assuntos
Archaea , Bactérias , Água do Mar/microbiologia , Microbiologia da Água , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Crescimento Quimioautotrófico , Metano/metabolismo , Nitrogênio/metabolismo , Oxirredução , Filogenia , Enxofre/metabolismo , Venezuela
17.
Nat Commun ; 8(1): 2134, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233980

RESUMO

The original version of this Article contained errors in the units of concentration of three reagents listed in the Methods. These errors have all been corrected in both the PDF and HTML versions of the Article.

18.
Science ; 358(6366): 1046-1051, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170234

RESUMO

Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean's interior, but the relevant taxa and energy sources remain enigmatic. We show evidence that nitrite-oxidizing bacteria affiliated with the Nitrospinae phylum are important in dark ocean chemoautotrophy. Single-cell genomics and community metagenomics revealed that Nitrospinae are the most abundant and globally distributed nitrite-oxidizing bacteria in the ocean. Metaproteomics and metatranscriptomics analyses suggest that nitrite oxidation is the main pathway of energy production in Nitrospinae. Microautoradiography, linked with catalyzed reporter deposition fluorescence in situ hybridization, indicated that Nitrospinae fix 15 to 45% of inorganic carbon in the mesopelagic western North Atlantic. Nitrite oxidation may have a greater impact on the carbon cycle than previously assumed.


Assuntos
Bactérias/metabolismo , Ciclo do Carbono , Carbono/metabolismo , Nitritos/metabolismo , Bactérias/citologia , Bactérias/genética , Hibridização in Situ Fluorescente , Metagenômica , Oceanos e Mares , Oxirredução , Água do Mar/microbiologia , Análise de Célula Única
19.
Nat Commun ; 8(1): 84, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729688

RESUMO

Microbial single-cell genomics can be used to provide insights into the metabolic potential, interactions, and evolution of uncultured microorganisms. Here we present WGA-X, a method based on multiple displacement amplification of DNA that utilizes a thermostable mutant of the phi29 polymerase. WGA-X enhances genome recovery from individual microbial cells and viral particles while maintaining ease of use and scalability. The greatest improvements are observed when amplifying high G+C content templates, such as those belonging to the predominant bacteria in agricultural soils. By integrating WGA-X with calibrated index-cell sorting and high-throughput genomic sequencing, we are able to analyze genomic sequences and cell sizes of hundreds of individual, uncultured bacteria, archaea, protists, and viral particles, obtained directly from marine and soil samples, in a single experiment. This approach may find diverse applications in microbiology and in biomedical and forensic studies of humans and other multicellular organisms.Single-cell genomics can be used to study uncultured microorganisms. Here, Stepanauskas et al. present a method combining improved multiple displacement amplification and FACS, to obtain genomic sequences and cell size information from uncultivated microbial cells and viral particles in environmental samples.


Assuntos
Deinococcus/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Genoma Viral/genética , Prochlorococcus/genética , Vírion/genética , Composição de Bases , Tamanho Celular , Deinococcus/citologia , Escherichia coli/citologia , Citometria de Fluxo , Técnicas de Amplificação de Ácido Nucleico , Prochlorococcus/citologia , Análise de Sequência de DNA , Análise de Sequência de RNA , Análise de Célula Única
20.
Front Microbiol ; 7: 846, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375571

RESUMO

The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...