Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain Behav Immun ; 94: 299-307, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33486003

RESUMO

CNS inflammation is a key factor in Alzheimer's Disease (AD), but its relation to pathological Aß, tau, and APOE4 is poorly understood, particularly prior to the onset of cognitive symptoms. To better characterize early relationships between inflammation, APOE4, and AD pathology, we assessed correlations between cerebrospinal fluid (CSF) inflammatory markers and brain levels of Aß and tau in cognitively normal older adults. Each participant received a lumbar puncture to collect and quantify CSF levels of TNFα, IL-6, IL-8, and IL-10, a T1-weighted MRI, and PET scanning with [18F]flortaucipir (FTP; n = 57), which binds to tau tangles and/or [18F]florbetapir (FBP; n = 58), which binds to Aß. Parallel voxelwise regressions assessed relationships between each CSF inflammatory marker and FTP and FBP SUVR, as well as APOE4*CSF inflammation interactions. Unexpectedly, we detected significant negative associations between regional Aß and tau PET uptake and CSF inflammatory markers. For Aß PET, we detected negative associations with CSF IL-6 and IL-8 in regions known to show early accumulation of Aß (i.e. lateral and medial frontal lobes). For tau PET, negative relationships were observed with CSF TNFα and IL-8, predominantly in regions known to exhibit early tau accumulation (i.e. medial temporal lobe). In subsequent analyses, significant interactions between APOE4 status and IL-8 on Aß and tau PET levels were observed in spatially distinct regions from those showing CSF-Aß/tau relationships. Results from the current cross-sectional study support previous findings that neuroinflammation may be protective against AD pathology at a given stage of the disease, and extend these findings to a cognitively normal aging population. This study provides new insight into a dynamic relationship between neuroinflammation and AD pathology and may have implications for whom and when neuroinflammatory therapies may be appropriate.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Estudos Transversais , Humanos , Tomografia por Emissão de Pósitrons , Proteínas tau
2.
J Neurosci ; 40(44): 8573-8586, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33046556

RESUMO

Tau pathology and vascular dysfunction are important contributors to Alzheimer's disease (AD), but vascular-tau associations and their effects on cognition are poorly understood. We investigated these associations in male and female humans by conducting voxelwise comparisons between cerebral blood flow (CBF) and tau positron emission tomography (PET) images in independent discovery [cognitively normal (CN), 19; mild cognitive impairment (MCI) risk, 43; MCI, 6] and replication (CN,73; MCI, 45; AD, 20) cohorts. In a subgroup, we assessed relationships between tau and soluble platelet-derived growth factor ß (sPDGFRß), a CSF marker of pericyte injury. We tested whether CBF/sPDGFRß-tau relationships differed based on Montreal Cognitive Assessment (MoCA) global cognition performance, or based on amyloid burden. Mediation analyses assessed relationships among CBF/sPDGFRß, tau, and cognition. Negative CBF-tau correlations were observed predominantly in temporal-parietal regions. In the replication cohort, early negative CBF-tau correlations increased in spatial extent and in strength of correlation with increased disease severity. Stronger CBF-tau and sPDGFRß-tau correlations were observed in participants with greater amyloid burden and lower MoCA scores. Importantly, when stratifying by amyloid status, stronger CBF-tau relationships in individuals with lower MoCA scores were driven by amyloid+ participants. Tau PET was a significant mediator CBF/sPDGFRß-MoCA relationships in numerous regions. Our results demonstrate vascular-tau associations across the AD spectrum and suggest that early vascular-tau associations are exacerbated in the presence of amyloid, consistent with a two-hit model of AD on cognition. Combination treatments targeting vascular health, as well as amyloid-ß and tau levels, may preserve cognitive function more effectively than single-target therapies.SIGNIFICANCE STATEMENT Emerging evidence demonstrates a role for vascular dysfunction as a significant contributor to Alzheimer's pathophysiology. However, associations between vascular dysfunction and tau pathology, and their effects on cognition remain poorly understood. Multimodal neuroimaging data from two independent cohorts were analyzed to provide novel in vivo evidence of associations between cerebral blood flow (CBF), an MRI measure of vascular health, and tau pathology using PET. CBF-tau associations were related to cognition and driven in part by amyloid burden. Soluble platelet-derived growth factor ß, an independent CSF vascular biomarker, confirmed vascular-tau associations in a subgroup analysis. These results suggest that combination treatments targeting vascular health, amyloid-ß, and tau levels may more effectively preserve cognitive function than single-target therapies.


Assuntos
Amiloide/metabolismo , Vasos Sanguíneos/diagnóstico por imagem , Cognição , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/metabolismo , Circulação Cerebrovascular , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Receptor beta de Fator de Crescimento Derivado de Plaquetas/líquido cefalorraquidiano
3.
Nature ; 581(7806): 71-76, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376954

RESUMO

Vascular contributions to dementia and Alzheimer's disease are increasingly recognized1-6. Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction7, including the early clinical stages of Alzheimer's disease5,8-10. The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer's disease11-14, leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes15-19, which maintain BBB integrity20-22. It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the ε3/ε4 or ε4/ε4 alleles) are distinguished from those without APOE4 (ε3/ε3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-ß or tau pathology measured in cerebrospinal fluid or by positron emission tomography23. High baseline levels of the BBB pericyte injury biomarker soluble PDGFRß7,8 in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-ß and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway19 in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer's disease pathology, and might be a therapeutic target in APOE4 carriers.


Assuntos
Apolipoproteína E4/genética , Barreira Hematoencefálica/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Capilares/patologia , Ciclofilina A/líquido cefalorraquidiano , Ciclofilina A/metabolismo , Feminino , Heterozigoto , Hipocampo/irrigação sanguínea , Humanos , Masculino , Metaloproteinase 9 da Matriz/líquido cefalorraquidiano , Metaloproteinase 9 da Matriz/metabolismo , Giro Para-Hipocampal/irrigação sanguínea , Pericitos/patologia , Tomografia por Emissão de Pósitrons , Receptor beta de Fator de Crescimento Derivado de Plaquetas/líquido cefalorraquidiano , Lobo Temporal/irrigação sanguínea , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
4.
Alzheimers Dement ; 16(6): 821-830, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301266

RESUMO

INTRODUCTION: Blood-brain barrier (BBB) breakdown and loss of brain capillary pericytes contributes to cognitive impairment. Pericytes express platelet-derived growth factor receptor-ß (PDGFRß) that regulates brain angiogenesis and blood vessel stability. Elevated soluble PDGFRß (sPDGFRß) levels in cerebrospinal fluid (CSF) indicate pericyte injury and BBB breakdown, which is an early biomarker of human cognitive dysfunction. METHODS: A combination of reagents and conditions were tested, optimized, and validated on the Meso Scale Discovery electrochemiluminescence platform to develop a new sPDGFRß immunoassay that was used to measure sPDGFRß in human CSF from 147 individuals. RESULTS: We developed standard operating procedures for a highly sensitive and reproducible sPDGFRß immunoassay with a dynamic range from 100 to 26,000 pg/mL, and confirmed elevated CSF sPDGFRß levels in individuals with cognitive dysfunction. DISCUSSION: This assay could be applied at different laboratories to study brain pericytes and microvascular damage in relation to cognition in disorders associated with neurovascular and cognitive dysfunction.


Assuntos
Barreira Hematoencefálica/metabolismo , Disfunção Cognitiva/diagnóstico , Pericitos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Barreira Hematoencefálica/patologia , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/patologia , Humanos , Pericitos/patologia , Sensibilidade e Especificidade
5.
Nat Med ; 25(2): 270-276, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643288

RESUMO

Vascular contributions to cognitive impairment are increasingly recognized1-5 as shown by neuropathological6,7, neuroimaging4,8-11, and cerebrospinal fluid biomarker4,12 studies. Moreover, small vessel disease of the brain has been estimated to contribute to approximately 50% of all dementias worldwide, including those caused by Alzheimer's disease (AD)3,4,13. Vascular changes in AD have been typically attributed to the vasoactive and/or vasculotoxic effects of amyloid-ß (Aß)3,11,14, and more recently tau15. Animal studies suggest that Aß and tau lead to blood vessel abnormalities and blood-brain barrier (BBB) breakdown14-16. Although neurovascular dysfunction3,11 and BBB breakdown develop early in AD1,4,5,8-10,12,13, how they relate to changes in the AD classical biomarkers Aß and tau, which also develop before dementia17, remains unknown. To address this question, we studied brain capillary damage using a novel cerebrospinal fluid biomarker of BBB-associated capillary mural cell pericyte, soluble platelet-derived growth factor receptor-ß8,18, and regional BBB permeability using dynamic contrast-enhanced magnetic resonance imaging8-10. Our data show that individuals with early cognitive dysfunction develop brain capillary damage and BBB breakdown in the hippocampus irrespective of Alzheimer's Aß and/or tau biomarker changes, suggesting that BBB breakdown is an early biomarker of human cognitive dysfunction independent of Aß and tau.


Assuntos
Biomarcadores/metabolismo , Barreira Hematoencefálica/patologia , Disfunção Cognitiva/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Humanos , Imageamento Tridimensional , Receptor beta de Fator de Crescimento Derivado de Plaquetas/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...