Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Vis ; 24(1): 10, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285454

RESUMO

The primate visual cortex contains various regions that exhibit specialization for different stimulus properties, such as motion, shape, and color. Within each region, there is often further specialization, such that particular stimulus features, such as horizontal and vertical orientations, are over-represented. These asymmetries are associated with well-known perceptual biases, but little is known about how they influence visual learning. Most theories would predict that learning is optimal, in the sense that it is unaffected by these asymmetries. However, other approaches to learning would result in specific patterns of perceptual biases. To distinguish between these possibilities, we trained human observers to discriminate between expanding and contracting motion patterns, which have a highly asymmetrical representation in the visual cortex. Observers exhibited biased percepts of these stimuli, and these biases were affected by training in ways that were often suboptimal. We simulated different neural network models and found that a learning rule that involved only adjustments to decision criteria, rather than connection weights, could account for our data. These results suggest that cortical asymmetries influence visual perception and that human observers often rely on suboptimal strategies for learning.


Assuntos
Aprendizagem Espacial , Córtex Visual , Animais , Humanos , Viés , Movimento (Física) , Redes Neurais de Computação
2.
Neuron ; 111(12): 1852-1853, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37348458

RESUMO

In this issue of Neuron, Khazali et al.1 record neural activity during coordinated reaches and saccades. They find that excitatory neurons link arm and eye movement regions of parietal cortex, creating a multiregional mode that predicts movement timing and direction.


Assuntos
Neurônios , Desempenho Psicomotor , Animais , Desempenho Psicomotor/fisiologia , Macaca mulatta , Neurônios/fisiologia , Lobo Parietal/fisiologia , Movimentos Sacádicos
3.
PLoS Biol ; 21(1): e3001973, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716309

RESUMO

Transcranial electrical stimulation (tES) is one of the oldest and yet least understood forms of brain stimulation. The idea that a weak electrical stimulus, applied outside the head, can meaningfully affect neural activity is often regarded as mysterious. Here, we argue that the direct effects of tES are not so mysterious: Extensive data from a wide range of model systems shows it has appreciable effects on the activity of individual neurons. Instead, the real mysteries are how tES interacts with the brain's own activity and how these dynamics can be controlled to produce desirable therapeutic effects. These are challenging problems, akin to repairing a complex machine while it is running, but they are not unique to tES or even neuroscience. We suggest that models of coupled oscillators, a common tool for studying interactions in other fields, may provide valuable insights. By combining these tools with our growing, interdisciplinary knowledge of brain dynamics, we are now in a good position to make progress in this area and meet the high demand for effective neuromodulation in neuroscience and psychiatry.


Assuntos
Neurociências , Estimulação Transcraniana por Corrente Contínua , Encéfalo/fisiologia , Eletricidade , Neurônios/fisiologia
4.
PLoS Biol ; 20(5): e3001650, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613140

RESUMO

Transcranial alternating current stimulation (tACS) is a popular method for modulating brain activity noninvasively. In particular, tACS is often used as a targeted intervention that enhances a neural oscillation at a specific frequency to affect a particular behavior. However, these interventions often yield highly variable results. Here, we provide a potential explanation for this variability: tACS competes with the brain's ongoing oscillations. Using neural recordings from alert nonhuman primates, we find that when neural firing is independent of ongoing brain oscillations, tACS readily entrains spiking activity, but when neurons are strongly entrained to ongoing oscillations, tACS often causes a decrease in entrainment instead. Consequently, tACS can yield categorically different results on neural activity, even when the stimulation protocol is fixed. Mathematical analysis suggests that this competition is likely to occur under many experimental conditions. Attempting to impose an external rhythm on the brain may therefore often yield precisely the opposite effect.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Animais , Encéfalo/fisiologia , Neurônios/fisiologia , Primatas , Técnicas Estereotáxicas , Estimulação Transcraniana por Corrente Contínua/métodos
5.
Curr Biol ; 32(11): 2467-2479.e4, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523181

RESUMO

Visual plasticity declines sharply after the critical period, yet we easily learn to recognize new faces and places, even as adults. Such learning is often characterized by a "moment of insight," an abrupt and dramatic improvement in recognition. The mechanisms that support abrupt learning are unknown, but one hypothesis is that they involve changes in synchronization between brain regions. To test this hypothesis, we used a behavioral task in which non-human primates rapidly learned to recognize novel images and to associate them with specific responses. Simultaneous recordings from inferotemporal and prefrontal cortices revealed a transient synchronization of neural activity between these areas that peaked around the moment of insight. Synchronization was strongest between inferotemporal sites that encoded images and reward-sensitive prefrontal sites. Moreover, its magnitude intensified gradually over image exposures, suggesting that abrupt learning is the culmination of a search for informative signals within a circuit linking sensory information to task demands.


Assuntos
Sincronização Cortical , Córtex Pré-Frontal , Animais , Sincronização Cortical/fisiologia , Córtex Pré-Frontal/fisiologia , Reconhecimento Psicológico , Recompensa , Aprendizagem Espacial
6.
Restor Neurol Neurosci ; 40(1): 1-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213337

RESUMO

BACKGROUND: Cortical blindness is a form of severe vision loss that is caused by damage to the primary visual cortex (V1) or its afferents. This condition has devastating effects on quality of life and independence. While there are few treatments currently available, accumulating evidence shows that certain visual functions can be restored with appropriate perceptual training: Stimulus sensitivity can be increased within portions of the blind visual field. However, this increased sensitivity often remains highly specific to the trained stimulus, limiting the overall improvement in visual function. OBJECTIVE: Recent advances in the field of perceptual learning show that such specificity can be overcome with training paradigms that leverage the properties of higher-level visual cortical structures, which have greater capacity to generalize across stimulus positions and features. This targeting can be accomplished by using more complex training stimuli that elicit robust responses in these visual structures. METHODS: We trained cortically blind subjects with a complex optic flow motion stimulus that was presented in a location of their blind field. Participants were instructed to train with the stimulus at home for approximately 30 minutes per day. Once performance plateaued, the stimulus was moved deeper into the blind field. A battery of pre- and post-training measures, with careful eye tracking, was performed to quantify the improvements. RESULTS: We show that 1) optic flow motion discrimination can be relearned in cortically blind fields; 2) training with an optic flow stimulus can lead to improvements that transfer to different tasks and untrained locations; and 3) such training leads to a significant expansion of the visual field. The observed expansion of the visual field was present even when eye movements were carefully controlled. Finally, we show that regular training is critical for improved visual function, as sporadic training reduced the benefits of training, even when the total numbers of training sessions were equated. CONCLUSIONS: These findings are consistent with the hypothesis that complex training stimuli can improve outcomes in cortical blindness, provided that patients adhere to a regular training regimen. Nevertheless, such interventions remain limited in their ability to restore functional vision.


Assuntos
Cegueira Cortical , Fluxo Óptico , Córtex Visual , Cegueira , Cegueira Cortical/etiologia , Humanos , Qualidade de Vida , Transtornos da Visão , Córtex Visual/fisiologia , Campos Visuais , Percepção Visual/fisiologia
7.
Restor Neurol Neurosci ; 40(4-6): 261-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37038774

RESUMO

BACKGROUND: Cortical visual impairment (CVI) is a severe loss of visual function caused by damage to the visual cortex or its afferents, often as a consequence of hypoxic insults during birth. It is one of the leading causes of vision loss in children, and it is most often permanent. OBJECTIVE: Several studies have demonstrated limited vision restoration in adults who trained on well-controlled psychophysical tasks, after acquiring CVI late in life. Other studies have shown improvements in children who underwent vision training. However, little is known about the prospects for the large number of patients who acquired CVI at birth but received no formal therapy as children. METHODS: We, therefore, conducted a proof-of-principle study in one CVI patient long after the onset of cortical damage (age 18), to test the training speed, efficacy and generalizability of vision rehabilitation using protocols that had previously proven successful in adults. The patient trained at home and in the laboratory, on a psychophysical task that required discrimination of complex motion stimuli presented in the blind field. Visual function was assessed before and after training, using perimetric measures, as well as a battery of psychophysical tests. RESULTS: The patient showed remarkably rapid improvements on the training task, with performance going from chance to 80% correct over the span of 11 sessions. With further training, improved vision was found for untrained stimuli and for perimetric measures of visual sensitivity. Some, but not all, of these performance gains were retained upon retesting after one year. CONCLUSIONS: These results suggest that existing vision rehabilitation programs can be highly effective in adult patients who acquired CVI at a young age. Validation with a large sample size is critical, and future work should also focus on improving the usability and accessibility of these programs for younger patients.

8.
J Vis ; 21(3): 10, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33683287

RESUMO

Visual perceptual learning (VPL) is an improvement in visual function following training. Although the practical utility of VPL was once thought to be limited by its specificity to the precise stimuli used during training, more recent work has shown that such specificity can be overcome with appropriate training protocols. In contrast, relatively little is known about the extent to which VPL exhibits motor specificity. Previous studies have yielded mixed results. In this work, we have examined the effector specificity of VPL by training observers on a motion discrimination task that maintains the same visual stimulus (drifting grating) and task structure, but that requires different effectors to indicate the response (saccade vs. button press). We find that, in these conditions, VPL transfers fully between a manual and an oculomotor response. These results are consistent with the idea that VPL entails the learning of a decision rule that can generalize across effectors.


Assuntos
Aprendizagem Espacial/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Aprendizagem por Discriminação , Feminino , Humanos , Masculino , Método Simples-Cego , Adulto Jovem
9.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303620

RESUMO

The processing of visual motion is conducted by dedicated pathways in the primate brain. These pathways originate with populations of direction-selective neurons in the primary visual cortex, which projects to dorsal structures like the middle temporal (MT) and medial superior temporal (MST) areas. Anatomical and imaging studies have suggested that area V3A might also be specialized for motion processing, but there have been very few studies of single-neuron direction selectivity in this area. We have therefore performed electrophysiological recordings from V3A neurons in two macaque monkeys (one male and one female) and measured responses to a large battery of motion stimuli that includes translation motion, as well as more complex optic flow patterns. For comparison, we simultaneously recorded the responses of MT neurons to the same stimuli. Surprisingly, we find that overall levels of direction selectivity are similar in V3A and MT and moreover that the population of V3A neurons exhibits somewhat greater selectivity for optic flow patterns. These results suggest that V3A should be considered as part of the motion processing machinery of the visual cortex, in both human and non-human primates.


Assuntos
Percepção de Movimento , Córtex Visual , Animais , Feminino , Macaca , Masculino , Movimento (Física) , Estimulação Luminosa , Lobo Temporal , Vias Visuais
10.
PLoS Biol ; 18(10): e3000834, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33001971

RESUMO

Transcranial alternating current stimulation (tACS) modulates brain activity by passing electrical current through electrodes that are attached to the scalp. Because it is safe and noninvasive, tACS holds great promise as a tool for basic research and clinical treatment. However, little is known about how tACS ultimately influences neural activity. One hypothesis is that tACS affects neural responses directly, by producing electrical fields that interact with the brain's endogenous electrical activity. By controlling the shape and location of these electric fields, one could target brain regions associated with particular behaviors or symptoms. However, an alternative hypothesis is that tACS affects neural activity indirectly, via peripheral sensory afferents. In particular, it has often been hypothesized that tACS acts on sensory fibers in the skin, which in turn provide rhythmic input to central neurons. In this case, there would be little possibility of targeted brain stimulation, as the regions modulated by tACS would depend entirely on the somatosensory pathways originating in the skin around the stimulating electrodes. Here, we directly test these competing hypotheses by recording single-unit activity in the hippocampus and visual cortex of alert monkeys receiving tACS. We find that tACS entrains neuronal activity in both regions, so that cells fire synchronously with the stimulation. Blocking somatosensory input with a topical anesthetic does not significantly alter these neural entrainment effects. These data are therefore consistent with the direct stimulation hypothesis and suggest that peripheral somatosensory stimulation is not required for tACS to entrain neurons.


Assuntos
Córtex Somatossensorial/fisiologia , Estimulação Transcraniana por Corrente Contínua , Anestesia , Animais , Combinação Lidocaína e Prilocaína/farmacologia , Macaca mulatta , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Sensação/efeitos dos fármacos , Sensação/fisiologia , Córtex Somatossensorial/efeitos dos fármacos
11.
Cogn Neurodyn ; 14(3): 267-280, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32399070

RESUMO

Various patterns of electrical activities, including travelling waves, have been observed in cortical experimental data from animal models as well as humans. By applying machine learning techniques, we investigate the spatiotemporal patterns, found in a spiking neuronal network with inhibition-induced firing (rebounding). Our cortical sheet model produces a wide variety of network activities including synchrony, target waves, and travelling wavelets. Pattern formation is controlled by modifying a Gaussian derivative coupling kernel through varying the level of inhibition, coupling strength, and kernel geometry. We have designed a computationally efficient machine classifier, based on statistical, textural, and temporal features, to identify the parameter regimes associated with different spatiotemporal patterns. Our results reveal that switching between synchrony and travelling waves can occur transiently and spontaneously without a stimulus, in a noise-dependent fashion, or in the presence of stimulus when the coupling strength and level of inhibition are at moderate values. They also demonstrate that when a target wave is formed, its wave speed is most sensitive to perturbations in the coupling strength between model neurons. This study provides an automated method to characterize activities produced by a novel spiking network that phenomenologically models large scale dynamics in the cortex.

12.
Rev Neurosci ; 31(5): 505-520, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32242834

RESUMO

About 25 years ago, the discovery of receptive field (RF) remapping in the parietal cortex of nonhuman primates revealed that visual RFs, widely assumed to have a fixed retinotopic organization, can change position before every saccade. Measuring such changes can be deceptively difficult. As a result, studies that followed have generated a fascinating but somewhat confusing picture of the phenomenon. In this review, we describe how observations of RF remapping depend on the spatial and temporal sampling of visual RFs and saccade directions. Further, we summarize some of the theories of how remapping might occur in neural circuitry. Finally, based on neurophysiological and psychophysical observations, we discuss the ways in which remapping information might facilitate computations in downstream brain areas.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Percepção/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Animais , Humanos , Estimulação Luminosa/métodos
13.
Proc Natl Acad Sci U S A ; 117(14): 8203-8211, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209663

RESUMO

Most people easily learn to recognize new faces and places, and with more extensive practice they can become experts at visual tasks as complex as radiological diagnosis and action video games. Such perceptual plasticity has been thoroughly studied in the context of training paradigms that require constant fixation. In contrast, when observers learn under more natural conditions, they make frequent saccadic eye movements. Here we show that such eye movements can play an important role in visual learning. Observers performed a task in which they executed a saccade while discriminating the motion of a cued visual stimulus. Additional stimuli, presented simultaneously with the cued one, permitted an assessment of the perceptual integration of information across visual space. Consistent with previous results on perisaccadic remapping [M. Szinte, D. Jonikaitis, M. Rolfs, P. Cavanagh, H. Deubel, J. Neurophysiol. 116, 1592-1602 (2016)], most observers preferentially integrated information from locations representing the presaccadic and postsaccadic retinal positions of the cue. With extensive training on the saccade task, these observers gradually acquired the ability to perform similar motion integration without making eye movements. Importantly, the newly acquired pattern of spatial integration was determined by the metrics of the saccades made during training. These results suggest that oculomotor influences on visual processing, long thought to subserve the function of perceptual stability, also play a role in visual plasticity.


Assuntos
Movimentos Sacádicos/fisiologia , Aprendizagem Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Sinais (Psicologia) , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
14.
Sci Rep ; 10(1): 5429, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214128

RESUMO

Inhibiting inappropriate actions in a context is an important part of the human cognitive repertoire, and deficiencies in this ability are common in neurological and psychiatric disorders. An anti-saccade is a simple oculomotor task that tests this ability by requiring inhibition of saccades to peripheral targets (pro-saccade) and producing voluntary eye movements toward the mirror position (anti-saccades). Previous studies provide evidence for a possible contribution from the basal ganglia in anti-saccade behavior, but the precise role of different components is still unclear. Parkinson's disease patients with implanted deep brain stimulators (DBS) in subthalamic nucleus (STN) provide a unique opportunity to investigate the role of the STN in anti-saccade behavior. Previous attempts to show the effect of STN DBS on anti-saccades have produced conflicting observations. For example, the effect of STN DBS on anti-saccade error rate is not yet clear. Part of this inconsistency may be related to differences in dopaminergic states in different studies. Here, we tested Parkinson's disease patients on anti- and pro-saccade tasks ON and OFF STN DBS, in ON and OFF dopaminergic medication states. First, STN DBS increases anti-saccade error rate while patients are OFF dopamine replacement therapy. Second, dopamine replacement therapy and STN DBS interact: L-dopa reduces the effect of STN DBS on anti-saccade error rate. Third, STN DBS induces different effects on pro- and anti-saccades in different patients. These observations provide evidence for an important role for the STN in the circuitry underlying context-dependent modulation of visuomotor action selection.


Assuntos
Movimentos Oculares , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Movimentos Sacádicos , Núcleo Subtalâmico/fisiologia , Idoso , Estimulação Encefálica Profunda , Feminino , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico
15.
J Neural Eng ; 17(2): 026003, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32023554

RESUMO

OBJECTIVE: An important challenge for the development of cortical visual prostheses is to generate spatially localized percepts of light, using artificial stimulation. Such percepts are called phosphenes, and the goal of prosthetic applications is to generate a pattern of phosphenes that matches the structure of the retinal image. A preliminary step in this process is to understand how the spatial positions of phosphene-like visual stimuli are encoded in the distributed activity of cortical neurons. The spatial resolution with which the distributed responses discriminate positions puts a limit on the capability of visual prosthesis devices to induce phosphenes at multiple positions. While most previous prosthetic devices have targeted the primary visual cortex, the extrastriate cortex has the advantage of covering a large part of the visual field with a smaller amount of cortical tissue, providing the possibility of a more compact implant. Here, we studied how well ensembles of Local Field Potentials (LFPs) and Multiunit activity (MUA) responses from extrastriate cortical visual area V4 of a behaving macaque monkey can discriminate between two-dimensional spatial positions. APPROACH: We used support vector machines (SVM) to determine the capabilities of LFPs and MUA to discriminate responses to phosphene-like stimuli (probes) at different spatial separations. We proposed a selection strategy based on the combined responses of multiple electrodes and used the linear learning weights to find the minimum number of electrodes for fine and coarse discriminations. We also measured the contribution of correlated trial-to-trial variability in the responses to the discrimination performance for MUA and LFP. MAIN RESULTS: We found that despite the large receptive field sizes in V4, the combined responses from multiple sites, whether MUA or LFP, are capable of fine and coarse discrimination of positions. Our electrode selection procedure significantly increased discrimination performance while reducing the required number of electrodes. Analysis of noise correlations in MUA and LFP responses showed that noise correlations in LFPs carry more information about spatial positions. SIGNIFICANCE: This study determined the coding strategy for fine discrimination, suggesting that spatial positions could be well localized with patterned stimulation in extrastriate area V4. It also provides a novel approach to build a compact prosthesis with relatively few electrodes, which has the potential advantage of reducing tissue damage in real applications.


Assuntos
Potenciais Evocados Visuais , Córtex Visual , Animais , Macaca , Fosfenos , Estimulação Luminosa
16.
Nat Neurosci ; 22(11): 1761-1770, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659335

RESUMO

Systems neuroscience seeks explanations for how the brain implements a wide variety of perceptual, cognitive and motor tasks. Conversely, artificial intelligence attempts to design computational systems based on the tasks they will have to solve. In artificial neural networks, the three components specified by design are the objective functions, the learning rules and the architectures. With the growing success of deep learning, which utilizes brain-inspired architectures, these three designed components have increasingly become central to how we model, engineer and optimize complex artificial learning systems. Here we argue that a greater focus on these components would also benefit systems neuroscience. We give examples of how this optimization-based framework can drive theoretical and experimental progress in neuroscience. We contend that this principled perspective on systems neuroscience will help to generate more rapid progress.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Redes Neurais de Computação , Animais , Encéfalo/fisiologia , Humanos
18.
Sci Data ; 6(1): 231, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653867

RESUMO

The methods for electrophysiology in neuroscience have evolved tremendously over the recent years with a growing emphasis on dense-array signal recordings. Such increased complexity and augmented wealth in the volume of data recorded, have not been accompanied by efforts to streamline and facilitate access to processing methods, which too are susceptible to grow in sophistication. Moreover, unsuccessful attempts to reproduce peer-reviewed publications indicate a problem of transparency in science. This growing problem could be tackled by unrestricted access to methods that promote research transparency and data sharing, ensuring the reproducibility of published results. Here, we provide a free, extensive, open-source software that provides data-analysis, data-management and multi-modality integration solutions for invasive neurophysiology. Users can perform their entire analysis through a user-friendly environment without the need of programming skills, in a tractable (logged) way. This work contributes to open-science, analysis standardization, transparency and reproducibility in invasive neurophysiology.


Assuntos
Eletrofisiologia/métodos , Software , Conjuntos de Dados como Assunto , Humanos , Disseminação de Informação , Reprodutibilidade dos Testes
19.
Proc Natl Acad Sci U S A ; 116(12): 5747-5755, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833389

RESUMO

Spike timing is thought to play a critical role in neural computation and communication. Methods for adjusting spike timing are therefore of great interest to researchers and clinicians alike. Transcranial electrical stimulation (tES) is a noninvasive technique that uses weak electric fields to manipulate brain activity. Early results have suggested that this technique can improve subjects' behavioral performance on a wide range of tasks and ameliorate some clinical conditions. Nevertheless, considerable skepticism remains about its efficacy, especially because the electric fields reaching the brain during tES are small, whereas the likelihood of indirect effects is large. Our understanding of its effects in humans is largely based on extrapolations from simple model systems and indirect measures of neural activity. As a result, fundamental questions remain about whether and how tES can influence neuronal activity in the human brain. Here, we demonstrate that tES, as typically applied to humans, affects the firing patterns of individual neurons in alert nonhuman primates, which are the best available animal model for the human brain. Specifically, tES consistently influences the timing, but not the rate, of spiking activity within the targeted brain region. Such effects are frequency- and location-specific and can reach deep brain structures; control experiments show that they cannot be explained by sensory stimulation or other indirect influences. These data thus provide a strong mechanistic rationale for the use of tES in humans and will help guide the development of future tES applications.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Encéfalo/fisiologia , Estimulação Elétrica/métodos , Eletroencefalografia , Macaca mulatta/fisiologia , Masculino , Primatas
20.
Nat Commun ; 9(1): 5092, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504921

RESUMO

Noninvasive brain stimulation techniques are used in experimental and clinical fields for their potential effects on brain network dynamics and behavior. Transcranial electrical stimulation (TES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), has gained popularity because of its convenience and potential as a chronic therapy. However, a mechanistic understanding of TES has lagged behind its widespread adoption. Here, we review data and modelling on the immediate neurophysiological effects of TES in vitro as well as in vivo in both humans and other animals. While it remains unclear how typical TES protocols affect neural activity, we propose that validated models of current flow should inform study design and artifacts should be carefully excluded during signal recording and analysis. Potential indirect effects of TES (e.g., peripheral stimulation) should be investigated in more detail and further explored in experimental designs. We also consider how novel technologies may stimulate the next generation of TES experiments and devices, thus enhancing validity, specificity, and reproducibility.


Assuntos
Encéfalo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Eletroencefalografia , Humanos , Neurofisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...