Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7315, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916488

RESUMO

While the ecological significance of hyporheic exchange and fine particle transport in rivers is well established, these processes are generally considered irrelevant to riverbed morphodynamics. We show that coupling between hyporheic exchange, suspended sediment deposition, and sand bedform motion strongly modulates morphodynamics and sorts bed sediments. Hyporheic exchange focuses fine-particle deposition within and below mobile bedforms, which suppresses bed mobility. However, deposited fines are also remobilized by bedform motion, providing a mechanism for segregating coarse and fine particles in the bed. Surprisingly, two distinct end states emerge from the competing interplay of bed stabilization and remobilization: a locked state in which fine particle deposition completely stabilizes the bed, and a dynamic equilibrium in which frequent remobilization sorts the bed and restores mobility. These findings demonstrate the significance of hyporheic exchange to riverbed morphodynamics and clarify how dynamic interactions between coarse and fine particles produce sedimentary patterns commonly found in rivers.

2.
Sci Rep ; 8(1): 4603, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545629

RESUMO

Rivers are a means of rapid and long-distance transmission of pathogenic microorganisms from upstream terrestrial sources. Pathogens enter streams and rivers via overland flow, shallow groundwater discharge, and direct inputs. Of concern is the protozoal parasite, Cryptosporidium, which can remain infective for weeks to months under cool and moist conditions, with the infectious stage (oocysts) largely resistant to chlorination. We applied a mobile-immobile model framework to assess Cryptosporidium transport and retention in streams, that also accounts for inactivation. The model is applied to California's Central Valley where Cryptosporidium exposure can be at higher risk due to agricultural and wildlife nonpoint sources. The results demonstrate that hyporheic exchange is an important process to include in models characterizing pathogen dynamics in streams, delaying downstream transmission and allowing for immobilization processes, such as reversible filtration in the sediments, to occur. Although in-stream concentrations decrease relatively quickly (within hours), pathogen accumulation of up to 66% of the inputs due to immobilization processes in the sediments and slower moving surface water could result in long retention times (months to years). The model appropriately estimates baseflow pathogen accumulation and can help predict the potential loads of resuspended pathogens in response to a storm event.


Assuntos
Cryptosporidium/fisiologia , Sedimentos Geológicos/parasitologia , Água Subterrânea/parasitologia , Modelos Teóricos , Agricultura , Cryptosporidium/crescimento & desenvolvimento , Monitoramento Ambiental , Oocistos/fisiologia , Fatores de Risco , Rios
3.
Water Res ; 66: 459-472, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25243658

RESUMO

Both microbial metabolism and pathogen retention and remobilization are dependent on downstream transport of fine particles, which migrate in a series of deposition and resuspension events. All fine particles, including clay minerals, particulate organic carbon, nutrients and microbes, are often considered to be transported similarly in the environment because of a lack of specific observations comparing their relative transport. We conducted a tracer injection study to compare the transport and retention of the fecal indicator bacterium Escherichia coli, synthetic inert fluorescent fine particles, and a dissolved conservative tracer. We found that the fluorescent fine particles and bacteria were transported similarly, with both having greater retention than the solute tracer. We used a stochastic model to evaluate in-stream retention and migration of the solute, fluorescent particles, and E. coli. The best-fit model parameters indicate that different stream reaches had varied retention characteristics, but always showed greater retention of fluorescent particles and E. coli compared to the solute tracer. Direct measurements within known retention areas after the injection showed that the majority of the fluorescent particles and E. coli were retained near the sediment-water interface in macrophyte stands or filtered within the top 3 cm of the streambed sediment. Both the tracer particles and E. coli were retained within these regions for multiple months following the injection experiment. The stochastic model properly captured the wide range of storage timescales and processes we observed in the stream. Our results demonstrate the importance of the streambed sediment and in-stream macrophytes as short- and long-term reservoirs for fine organic particles and microbes in streams.


Assuntos
Escherichia coli/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Fezes , Citometria de Fluxo , Corantes Fluorescentes/química , Sedimentos Geológicos/microbiologia , Tamanho da Partícula , Rios/microbiologia , Processos Estocásticos , Movimentos da Água , Poluentes da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA