Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893397

RESUMO

A specific feature of mushrooms (including those of the genus Pleurotus) is their natural ability to absorb and accumulate many chemical substances present in their immediate environment, which makes them an excellent natural sorption material. Hence, fruiting bodies of mushrooms have been recognized for years as excellent indicators of the environment, reflecting its current state. Nevertheless, mushrooms can accumulate both health-promoting substances, such as bioelements, and toxic substances, such as heavy metals and organic compounds, including bisphenol A® (BPA). This organic chemical compound in the phenol group, although it has been withdrawn in the EU since 2010, is widely present in the environment around us. In the present experiment, we aimed to determine the effect of adding BPA to liquid media for in vitro cultures of Pleurotus spp. The biomass increases were determined. Moreover, the degrees of adsorption and desorption of BPA from the obtained freeze-dried biomass in two different environments (neutral and acidic) were determined as a function of time. This is the first study to determine the bioavailability of adsorbed BPA in obtained biomass by extracting the mycelium into artificial digestive juices in a model digestive system. BPA was added to the liquid Oddoux medium in the following amounts: 0.01, 0.5, and 0.5 g/250 mL of medium. The amounts of adsorbed and desorbed BPA were determined by flow injection analysis (FIA) with amperometric detection. The addition of BPA to the substrate reduced the biomass growth in each of the discussed cases. BPA adsorption by the mycelium occurred at over 90% and depended on the morphology of the mushroom (structure, surface development, and pore size). BPA desorption depended on the pH of the environment and the desorption time. Mushrooms are an excellent natural remedial material, but BPA is extracted into artificial digestive juices; therefore, consuming mushrooms from industrialized areas may have health consequences for our bodies.


Assuntos
Compostos Benzidrílicos , Biomassa , Fenóis , Pleurotus , Fenóis/química , Fenóis/metabolismo , Pleurotus/metabolismo , Pleurotus/química , Pleurotus/crescimento & desenvolvimento , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Adsorção , Análise de Injeção de Fluxo
2.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676109

RESUMO

A new construction of a potentiometric sensor was introduced for the first time. It relies on the use of two membranes instead of one, as in the well-known coated-disc electrode. For this purpose, a new electrode body was constructed, including not one, but two glassy carbon discs covered with an ion-selective membrane. This solution allows for the sensor properties to be enhanced without using additional materials (layers or additives) on the membrane. The new construction is particularly useful for in situ measurements in environmental samples. Two ion-selective polymeric membranes were used, namely H+ and K+-selective membranes, to confirm the universality of the idea. The tests conducted included chronopotentiometric tests, electrochemical impedance spectroscopy, and potentiometric measurements. The electrical and analytical parameters of the sensors were evaluated and compared for all tested electrodes to evaluate the properties of the planar electrode versus previously known constructions. Research has shown that the application of two membranes instead of one allows for the resistance of an electrode to be lowered and for the electrical capacitance to be elevated. Improving the electrical properties of an electrode resulted in the enhancement of its analytical properties. The pH measurement range of the planar electrode is 2-11, which is much wider in contrast to that of the single-membrane electrode. The linear range of the K+-selective planar electrode is wider than that of the coated-disc electrode and equals 10-6 to 10-1 M. The response time turned out to be a few seconds shorter, and the potential drift was smaller due to the application of an additional membrane in the electrode construction. This research creates a new opportunity to design robust potentiometric sensors, as the presented construction is universal and can be used to obtain electrodes selective to various ions.

3.
Membranes (Basel) ; 13(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38132894

RESUMO

For the first time, a new composite voltammetric sensor based on yttria-stabilized zirconia doped with neodymium-carbon black-Nafion glassy carbon electrode (YSZNd-CB-Nafion/GCE) for the determination of metoprolol (MET) has been developed. The instrumental parameters and supporting electrolyte were optimized. For 105 s accumulation time, linearity was achieved in the range of 0.01 to 0.2 µM. The limit of detection (for 105 s accumulation time) was equal to 2.9 nM (2 µg/L), and was the best result in comparison to other voltametric sensors. The reproducibility of the metoprolol signal presented as relative standard deviation (RSD) was equal to 1.9% (n = 7). Additionally, our electrode is characterized by high stability, is easy to use, and has a short preparation time. The proposed sensor was found useful for MET determination in plasma and urine, as well as for pharmaceutical samples, with a good recovery parameter (96-108%). Flow injection analysis (FIA) with amperometric detection was also performed for MET determination. The recovery was calculated and was in the range 101-103%, suggesting that the proposed material may be applied in flow injection analysis.

4.
Membranes (Basel) ; 13(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37999362

RESUMO

Recently, there has been rapid development of electrochemical sensors, and there have been numerous reports in the literature that describe new constructions with improved performance parameters. Undoubtedly, this is due to the fact that those sensors are characterized by very good analytical parameters, and at the same time, they are cheap and easy to use, which distinguishes them from other analytical tools. One of the trends observed in their development is the search for new functional materials. This review focuses on potentiometric sensors designed with the use of various metal oxides. Metal oxides, because of their remarkable properties including high electrical capacity and mixed ion-electron conductivity, have found applications as both sensing layers (e.g., of screen-printing pH sensors) or solid-contact layers and paste components in solid-contact and paste-ion-selective electrodes. All the mentioned applications of metal oxides are described in the scope of the paper. This paper presents a survey on the use of metal oxides in the field of the potentiometry method as both single-component layers and as a component of hybrid materials. Metal oxides are allowed to obtain potentiometric sensors of all-solid-state construction characterized by remarkable analytical parameters. These new types of sensors exhibit properties that are competitive with those of the commonly used conventional electrodes. Different construction solutions and various metal oxides were compared in the scope of this review based on their analytical parameters.

5.
Mikrochim Acta ; 190(11): 449, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874386

RESUMO

A new voltammetric method is proposed for high sensitive thiethylperazine (THP) determination, using a glassy carbon electrode modified with semi-graphitized carbon nanofibers/MnO nanocomposite (eCNF/MnO/GC). To the best of our knowledge, this is the first electrochemical assay of THP  determination, and the first use of the eCNF/MnO as the electrode modifier. The proposed method using eCNF/MnO/GC is characterized by high repeatability and sensitivity of measurements, with the linearity of THP in the range from 0.05 to 2.2 µmol L-1. The lowest detection limit achieved on the eCNF/MnO/GC electrode for 30 s of preconcentration was 6.3 nmol L-1 THP in 0.05 mol L-1 acetate buffer of  pH 5.6. The proposed method was successfully applied to highly sensitive THP determination in complex matrices, such as tablets and plasma with good recovery (98-103%). The RSD value obtained for THP measurement at a concentration of 0.1 µmol L-1 was 1.3%. Amperometric measurements of THP under the flow injection conditions were also performed to indicate the possibility of its fast and accurate determination (103% and 95% for unmodified and modified electrode, respectively), with the duration of single analysis of approx. 30 s.

6.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513347

RESUMO

A novel electrochemical method for the determination of quinoline yellow (QY) was developed using the renewable amalgam film electrode (Hg(Ag)FE). The sensors used can be characterized by good stability and long lifespan. Irreversible QY reduction peaks were recorded in 0.05 mol L-1 HCl with a potential of about -630 mV. The use of the Hg(Ag)FE electrode with a regulated working surface allowed the QY limit of detection to be as low as 0.48 nmol L-1. The obtained result is the lowest in comparison to other voltammetric methods described in the literature. The effects of parameters such as the size of the working electrode surface, influence of the pH value, accumulation time, and potential were investigated to provide precision and high sensitivity of the performed measurements. This new procedure was applied for the highly sensitive determination of quinoline yellow in different beverages, pre-workout supplements, and throat lozenges. The process of sample preparation was relatively simple. Calculated recoveries (96-107%) suggest that the method can be considered accurate.

7.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420564

RESUMO

Sumatriptan is an organic chemical compound from the tryptamine group. It is used as a medicine for migraine attacks and in the treatment of cluster headaches. In this work, a new voltammetric method is proposed for highly sensitive SUM determination, using glassy carbon electrodes modified with carbon black and titanium dioxide suspension. The novelty of the presented work is the usage of the mixture of carbon black and TiO2 as glassy carbon electrode modifier for the first time for SUM determination. The mentioned sensor was characterized by great repeatability and sensitivity of measurements, which resulted in the obtention of a wide range of linearity and a low detection limit. The electrochemical properties of the CB-TiO2/GC sensor was characterized using the LSV and EIS method. The effect of different factors on the SUM peak, such as supporting electrolyte type, preconcentration time and potential, or influence of interferents, were tested using the square wave voltammetry technique. The linear voltammetric response for the analyte was obtained in the concentration range of 5 nmol L-1 to 150 µmol L-1 with a detection limit of 2.9 nmol L-1 for a preconcentration time of 150 s in the 0.1 mol L-1 phosphate buffer pH 6.0. The proposed method was successfully applied for highly sensitive sumatriptan determination in complex matrices, such as tablets, urine, and plasma, with a good recovery parameter (94-105%). The presented CB-TiO2/GC electrode is characterized by great stability, it was used for 6 weeks without significant changes in the SUM peak current. Amperometric and voltammetric measurements of SUM under the flow injection conditions were also performed to indicate the possibility of its fast and accurate determination with a time of single analysis of approx. 30 s.


Assuntos
Carbono , Sumatriptana , Carbono/química , Análise de Injeção de Fluxo , Fuligem , Eletrodos , Fosfatos , Técnicas Eletroquímicas
8.
Membranes (Basel) ; 13(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37505048

RESUMO

A new voltammetry method for the highly sensitive antibacterial drug ciprofloxacin (CIP) is presented using glassy carbon electrodes modified with hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo-GCE). The use of a modified glassy carbon electrode in the form of hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo) led to an LOD value as low as 6.0 µmol L-1 with a measurement sensitivity of 3.33 µA µmol L-1. The described procedure was successfully applied for CIP determination in samples with complex matrices, such as urine or plasma, and also in pharmaceutical products and antibiotic discs with satisfactory recovery values ranging between 94-104%. The proposed electrode was characterised by great stability, with the possibility of use for about 4 weeks without any significant change in the CIP peak current. The repeatability of the CIP response on the eCNF/CNT/NiCo/GC is also very good; its value measured and expressed as RSD is equal to 2.4% for a CIP concentration of 0.025 µmol L-1 (for 7 consecutive CIP voltammogram registrations). The procedure for electrode preparation is quick and simple and does not involve the use of expensive apparatus.

9.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298788

RESUMO

This paper presents new paste ion-selective electrodes for the determination of nitrate ions in soil. The pastes used in the construction of the electrodes are based on carbon black doped with transition metal oxides: ruthenium, iridium, and polymer-poly(3-octylthiophene-2,5-diyl). The proposed pastes were electrically characterized by chronopotentiometry and broadly characterized potentiometrically. The tests showed that the metal admixtures used increased the electric capacitance of the pastes to 470 µF for the ruthenium-doped paste. The polymer additive used positively affects the stability of the electrode response. All tested electrodes were characterized by a sensitivity close to that of the Nernst equation. In addition, the proposed electrodes have a measurement range of 10-5 to 10-1 M NO3- ions. They are impervious to light conditions and pH changes in the range of 2-10. The utility of the electrodes presented in this work was demonstrated during measurements directly in soil samples. The electrodes presented in this paper show satisfactory metrological parameters and can be successfully used for determinations in real samples.


Assuntos
Rutênio , Elementos de Transição , Óxidos , Fuligem , Nitratos , Carbono/química , Eletrodos
10.
Materials (Basel) ; 16(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36770010

RESUMO

A new solid-contact ion-selective electrode (ISE) sensitive to lead (II) ions, obtained by modifying a polymer membrane with a nanocomposite of carbon nanofibers and an ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate, is presented. Electrodes with a different amount of nanocomposite in the membrane (0-9% w/w), in which a platinum wire or a glassy carbon electrode was used as an internal electrode, were tested. Potentiometric and electrochemical impedance spectroscopy measurements were carried out to determine the effect of the ion-sensitive membrane modification on the analytical and electrical parameters of the ion-selective electrode. It was found that the addition of the nanocomposite causes beneficial changes in the properties of the membrane, i.e., a decrease in resistance and an increase in capacitance and hydrophobicity. As a result, the electrodes with the modified membrane were characterized by a lower limit of detection, a wider measuring range and better selectivity compared to the unmodified electrode. Moreover, a significant improvement in the stability and reversibility of the electrode potential was observed, and additionally, they were resistant to changes in the redox potential of the sample. The best parameters were shown by the electrode obtained with the use of a platinum wire as the inner electrode with a membrane containing 6% of the nanocomposite. The electrode exhibited a Nernstian response to lead ions over a wide concentration range, 1.0 × 10-8-1.0 × 10-2 mol L-1, with a slope of 31.5 mV/decade and detection limit of 6.0 × 10-9 mol L-1. In addition, the proposed sensor showed very good long term stability and worked properly 4 months after its preparation without essential changes in the E0 or slope values. It was used to analyze a real sample and correct results of lead content determination were obtained.

11.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498883

RESUMO

A new voltammetry method for the highly sensitive antidepressant drug vortioxetine (VOR) is presented using glassy carbon electrodes modified with hierarchical carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo-GCE). The electrochemical behavior of VOR was investigated by cyclic voltammetry, which indicates that its oxidation is an adsorption-controlled process with the exchange of two electrons and one proton. The effects of various factors on the VOR peak, such as supporting electrolyte type, preconcentration time, and potential, or influence of interferents, were tested using the square wave voltammetry technique (SWV). The linear voltametric response for the analyte was obtained in the concentration range from 0.01·10-6 to 3.0·10-6 mol L-1 with the detection limit of 1.55·10-9 mol L-1 for a preconcentration time of 60 s. The proposed method was successfully applied for highly sensitive VOR determination in complex matrices such as tablets, urine, and plasma with good recovery parameter.


Assuntos
Carbono , Nanopartículas , Vortioxetina , Eletrodos , Adsorção , Técnicas Eletroquímicas
12.
Membranes (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36557132

RESUMO

This article presents advances in the electrochemical determination of hormones and steroids since 2000. A wide spectrum of techniques and working electrodes have been involved in the reported measurements in order to obtain the lowest possible limits of detection. The voltammetric and polarographic techniques, due to their sensitivity and easiness, could be used as alternatives to other, more complicated, analytical assays. Still, growing interest in designing a new construction of the working electrodes enables us to prepare new measurement procedures and obtain lower limits of detection. A brief description of the measured compounds has been presented, along with a comparison of the obtained results.

13.
Membranes (Basel) ; 12(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36557182

RESUMO

A new group of carbon nanomaterials modified with poly(3-octylthiophene-2,5-diyl) for solid-contact layers in ion-selective electrodes was obtained. The materials were characterized by scanning electron microscopy and measurement of the contact angle. The modification greatly improved the hydrophobicity of the materials, and the highest contact angle (175°) was obtained for a polymer-modified carbon nanofibers/nanotube nanocomposite. The electrical parameters of the electrodes were determined using the methods of chronopotentiometry and electrochemical impedance spectroscopy. The highest electrical charge capacity was obtained for polymer-modified carbon nanofibers (7.87 mF/cm2). For this material, the lowest detection limit (10-6.2 M) and the best potential reversibility (SD = 0.2 mV) were also obtained in potentiometric measurements.

14.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433548

RESUMO

Aceclofenac (ACL) is an anti-inflammatory drug, which is taken by patients who mainly suffer from rheumatoid conditions. In this work, we propose a new voltammetric method that allows the determination of ACL in pharmaceutics, urine, and plasma. As a working electrode, a glassy carbon electrode (GCE) modified with carbon nanofibers, carbon nanotubes, and NiCo nanoparticles (eCNF/CNT/NiCo-GCE) was used. The mentioned sensors are characterized by good repeatability and sensitivity, and their process of preparation is simple, fast, and cost-effective. Instrumental and method parameters were optimized, and the influence of interferences was investigated. To validate the analytical performance of the method, calibration was conducted. Good linearity was obtained (0.05-1.4 µM, r = 0.998), as well as excellent limit of detection (LOD) and limit of quantification (LOQ) values (0.7 nM and 2.1 nM, respectively). Calculated recoveries that were in the range of 98%-105% indicate that this method is accurate and might be used in routine laboratory practice.


Assuntos
Nanocompostos , Nanotubos de Carbono , Humanos , Eletrodos , Diclofenaco
15.
Materials (Basel) ; 15(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35888272

RESUMO

This work proposes new carbon materials for intermediate layers in solid-contact electrodes sensitive for potassium ions. The group of tested materials includes electrospun carbon nanofibers, electrospun carbon nanofibers with incorporated cobalt nanoparticles and hierarchical nanocomposites composed of carbon nanotubes deposited on nanofibers with different metal nanoparticles (cobalt or nickel) and nanotube density (high or low). Materials were characterized using scanning electron microscopy and contact angle microscopy. Electrical parameters of ready-to-use electrodes were characterized using chronopotentiometry and electrochemical impedance spectroscopy. The best results were obtained for potassium electrodes with carbon nanofibers with nickel-cobalt nanoparticles and high density of nanotubes layer: the highest capacity value (330 µF), the lowest detection limit (10-6.3 M), the widest linear range (10-6-10-1) and the best reproducibility of normal potential (0.9 mV). On the other hand the best potential reversibility, the lowest potential drift (20 µV·h-1) in the long-term test and the best hydrophobicity (contact angle 168°) were obtained for electrode with carbon nanofibers with cobalt nanoparticles and high density of carbon nanotubes. The proposed electrodes can be used successfully in potassium analysis of real samples as shown in the example of tomato juices.

16.
Materials (Basel) ; 15(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629673

RESUMO

A new electrochemical sensor based on hierarchical carbon nanofibers with Ni and Co nanoparticles (eCNF/CNT/NiCo-GCE) was developed. The presented sensor may be characterized by high sensitivity, good electrical conductivity, and electrocatalytic properties. Reproducibility of its preparation expressed as %RSD (relative standard deviation) was equal to 9.7% (n = 5). The repeatability of the signal register on eCNF/CNT/NiCo-GCE was equal to 3.4% (n = 9). The developed sensor was applied in the determination of the antihistamine drug-cetirizine hydrochloride (CTZ). Measurement conditions, such as DPV (differential pulse voltammetry) parameters, supporting electrolyte composition and concentration were optimized. CTZ exhibits a linear response in three concentration ranges: 0.05-6 µM (r = 0.988); 7-32 (r = 0.992); and 42-112 (r = 0.999). Based on the calibration performed, the limit of detection (LOD) and limit of quantification (LOQ) were calculated and were equal to 14 nM and 42 nM, respectively. The applicability of the optimized method for the determination of CTZ was proven by analysis of its concentration in real samples, such as pharmaceutical products and body fluids (urine and plasma). The results were satisfactory and the calculated recoveries (97-115%) suggest that the method may be considered accurate. The obtained results proved that the developed sensor and optimized method may be used in routine laboratory practice.

17.
Membranes (Basel) ; 12(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35448319

RESUMO

This paper introduces hydrous cerium dioxide applied for the first time as a solid-contact layer in ion-selective electrodes. Cerium dioxide belongs to the group of metal oxides that exhibit both redox activity and a large surface area and therefore was considered to be an appropriate material for the solid-contact layer in potentiometric sensors. The material was examined both standalone and as a component of composite materials (with the addition of carbon nanomaterial or conducting polymer). Three cerium dioxide-based materials were tested as solid-contact layers in potentiometric sensors in the context of their microstructure, wettability, and electrical properties. The addition of hydrous cerium dioxide was shown to enhance the properties of carbon nanotubes and poly(3-octylthiophene-2,5-diyl) by increasing the value of electrical capacitance (798 µF and 112 µF for hCeO2-NTs and hCeO2-POT material, respectively) and the value of contact angle (100° and 120° for hCeO2-NTs and hCeO2-POT material, respectively). The proposed sensor preparation method is easy, without the need to use an advanced apparatus or specific conditions, and fast; sensors can be prepared within an hour. Designed hCeO2-based electrodes exhibit competitive linear range and potential stability within the wide range of pH values (2.0-11.5). Designed electrodes are dedicated to potassium determination in environmental and clinical samples.

18.
Talanta ; 237: 122937, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736668

RESUMO

New highly sensitive voltammetric method for captopril (CPT) determination was developed. The main novelty of the work was the application of a renewable amalgam film electrode (Hg(Ag)FE) for this purpose. During the research instrumental parameters of the developed method were optimized and were as follows: tw = ts = 5 ms, Es = 5 mV, ΔE = 100 mV. Preconcentration potential and time were equal to 100 mV and 20 s, respectively. All measurements were conducted in electrolyte consisted of 0.1 M HClO4. Limit of detection was calculated and was equal to 1.9 nM (0.39 ng mL-1) for 20 s preconcentration time and Hg(Ag)FE surface area approximately 11.2 mm2. Linearity was achieved in the concentration range 0.05-1 µM. Repeatability of the method expressed as variation coefficient was estimated at 3.5% (0.15 µM CPT, n = 10). Applicability of the method was confirmed by analysis of tablets containing CPT and urine. Recoveries were in the range from 95 to 109% suggesting that the method might be assumed as accurate. Obtained results were also in good agreement with the producer declaration.


Assuntos
Captopril , Mercúrio , Eletrodos
19.
Materials (Basel) ; 16(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36614531

RESUMO

The new reliable sensor for pH determination was designed with the use of hydrous iridium dioxide and its composites. Three different hIrO2-based materials were prepared and applied as solid-contact layers in pH-selective electrodes with polymeric membrane. The material choice included standalone hydrous iridium oxide; composite material of hydrous iridium oxide, carbon nanotubes, and triple composite material composed of hydrous iridium oxide; carbon nanotubes; and poly(3-octylthiophene-2,5-diyl). The paper depicts that the addition of functional material to standalone metal oxide is beneficial for the performance of solid-state ion-selective electrodes and presents the universal approach to designing this type of sensors. Each component contributed differently to the sensors' performance-the addition of carbon nanotubes increased the electrical capacitance of sensor (up to 400 µF) while the addition of conducting polymer allowed it to increase the contact angle of material changing its wetting properties and enhancing the stability of potentiometric response. Hydrous iridium oxide contacted electrodes exhibit linear response in wide linear range of pH (2-11) and stable potentiometric response (the lowest potential drift of 0.036 mV/h is attributed to the electrode with triple composite material).

20.
Materials (Basel) ; 14(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34947178

RESUMO

A new voltametric method for highly sensitive propranolol (PROP) determination was developed. A glassy carbon electrode modified with a hybrid material made of carbon black (CB) and Nafion was used as the working electrode. The preconcentration potential and time were optimized (550 mV and 15 s), as well as the supporting electrolyte (0.1 mol L-1 H2SO4). For 15 s preconcentration time, linearity was achieved in the range 0.5-3.5 µmol L-1 and for 120 s in 0.02-0.14 µmol L-1. Based on the conducted calibration (120 s preconcentration time) limit of detection (LOD) was calculated and was equal to 7 nmol L-1. To verify the usefulness of the developed method, propranolol determination was carried out in real samples (tablets and freeze-dried urine). Recoveries were calculated and were in the range 92-102%, suggesting that the method might be considered as accurate. The repeatability of the signal expressed as relative standard deviation (RSD) was equal to 1.5% (n = 9, PROP concentration 2.5 µmol L-1). The obtained results proved that the developed method for propranolol determination might be successfully applied in routine laboratory practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA