Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 17(2): 594-603, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30409919

RESUMO

PROTOCADHERIN 7 (PCDH7), a transmembrane receptor and member of the Cadherin superfamily, is frequently overexpressed in lung adenocarcinoma and is associated with poor clinical outcome. Although PCDH7 was recently shown to promote transformation and facilitate brain metastasis in lung and breast cancers, decreased PCDH7 expression has also been documented in colorectal, gastric, and invasive bladder cancers. These data suggest context-dependent functions for PCDH7 in distinct tumor types. Given that PCDH7 is a potentially targetable molecule on the surface of cancer cells, further investigation of its role in tumorigenesis in vivo is needed to evaluate the therapeutic potential of its inhibition. Here, we report the analysis of novel PCDH7 gain- and loss-of-function mouse models and provide compelling evidence that this cell-surface protein acts as a potent lung cancer driver. Employing a Cre-inducible transgenic allele, we demonstrated that enforced PCDH7 expression significantly accelerates KrasG12D -driven lung tumorigenesis and potentiates MAPK pathway activation. Furthermore, we performed in vivo somatic genome editing with CRISPR/Cas9 in KrasLSL-G12D ; Tp53fl/fl (KP) mice to assess the consequences of PCDH7 loss of function. Inactivation of PCDH7 in KP mice significantly reduced lung tumor development, prolonged survival, and diminished phospho-activation of ERK1/2. Together, these findings establish a critical oncogenic function for PCDH7 in vivo and highlight the therapeutic potential of PCDH7 inhibition for lung cancer. Moreover, given recent reports of elevated or reduced PCDH7 in distinct tumor types, the new inducible transgenic model described here provides a robust experimental system for broadly elucidating the effects of PCDH7 overexpression in vivo. IMPLICATIONS: In this study, we establish a critical oncogenic function for PCDH7 in vivo using novel mouse models and CRISPR/Cas9 genome editing, and we validate the therapeutic potential of PCDH7 inhibition for lung cancer.


Assuntos
Adenocarcinoma de Pulmão/genética , Caderinas/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Caderinas/deficiência , Caderinas/metabolismo , Carcinogênese , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Protocaderinas , Transdução de Sinais
2.
Dev Dyn ; 248(2): 173-188, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444277

RESUMO

BACKGROUND: Many human gene mutations have been linked to congenital heart disease (CHD), yet CHD remains a major health issue worldwide due in part to an incomplete understanding of the molecular basis for cardiac malformation. RESULTS: Here we identify the orthologous mouse Pou6f1 and zebrafish pouC as POU homeodomain transcription factors enriched in the developing heart. We find that pouC is a multi-functional transcriptional regulator containing separable activation, repression, protein-protein interaction, and DNA binding domains. Using zebrafish heart development as a model system, we demonstrate that pouC knockdown impairs cardiac morphogenesis and affects cardiovascular function. We also find that levels of pouC expression must be fine-tuned to enable proper heart formation. At the cellular level, we demonstrate that pouC knockdown disrupts atrioventricular canal (AVC) cardiomyocyte maintenance, although chamber myocyte specification remains intact. Mechanistically, we show that pouC binds a bmp4 intronic regulatory element to mediate transcriptional activation. CONCLUSIONS: Taken together, our study establishes pouC as a novel transcriptional input into the regulatory hierarchy that drives AVC morphogenesis in zebrafish. We anticipate that these findings will inform future efforts to explore functional conservation in mammals and potential association with atrioventricular septal defects in humans. Developmental Dynamics 248:173-188, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Proteína Morfogenética Óssea 4/genética , Regulação da Expressão Gênica no Desenvolvimento , Septos Cardíacos/crescimento & desenvolvimento , Fatores do Domínio POU/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Proteína Morfogenética Óssea 4/metabolismo , Coração/embriologia , Coração/crescimento & desenvolvimento , Defeitos dos Septos Cardíacos , Septos Cardíacos/embriologia , Camundongos , Fatores do Domínio POU/metabolismo , Ligação Proteica , Fatores de Transcrição , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
Cell Rep ; 25(8): 2223-2233.e6, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463017

RESUMO

Pathways underlying metabolic reprogramming in cancer remain incompletely understood. We identify the transmembrane serine protease TMPRSS11B as a gene that promotes transformation of immortalized human bronchial epithelial cells (HBECs). TMPRSS11B is upregulated in human lung squamous cell carcinomas (LSCCs), and high expression is associated with poor survival of non-small cell lung cancer patients. TMPRSS11B inhibition in human LSCCs reduces transformation and tumor growth. Given that TMPRSS11B harbors an extracellular (EC) protease domain, we hypothesized that catalysis of a membrane-bound substrate modulates tumor progression. Interrogation of a set of soluble receptors revealed that TMPRSS11B promotes solubilization of Basigin, an obligate chaperone of the lactate monocarboxylate transporter MCT4. Basigin release mediated by TMPRSS11B enhances lactate export and glycolytic metabolism, thereby promoting tumorigenesis. These findings establish an oncogenic role for TMPRSS11B and provide support for the development of therapies that target this enzyme at the surface of cancer cells.


Assuntos
Glicólise , Ácido Láctico/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Basigina/metabolismo , Transporte Biológico , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/patologia , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Neoplasias de Células Escamosas/metabolismo , Neoplasias de Células Escamosas/patologia , Ligação Proteica , Solubilidade
4.
Cell Rep ; 16(6): 1614-1628, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477280

RESUMO

KRAS is one of the most commonly mutated oncogenes in human cancer. Mutant KRAS aberrantly regulates metabolic networks. However, the contribution of cellular metabolism to mutant KRAS tumorigenesis is not completely understood. We report that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty Acyl-CoA esters, the substrates for lipid synthesis and ß-oxidation. ACSL3 suppression is associated with depletion of cellular ATP and causes the death of lung cancer cells. Furthermore, mutant KRAS promotes the cellular uptake, retention, accumulation, and ß-oxidation of fatty acids in lung cancer cells in an ACSL3-dependent manner. Finally, ACSL3 is essential for mutant KRAS lung cancer tumorigenesis in vivo and is highly expressed in human lung cancer. Our data demonstrate that mutant KRAS reprograms lipid homeostasis, establishing a metabolic requirement that could be exploited for therapeutic gain.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A Ligases/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Coenzima A Ligases/metabolismo , Ácidos Graxos/metabolismo , Humanos , Ligases/metabolismo , Metabolismo dos Lipídeos/genética , Lipogênese/fisiologia , Neoplasias Pulmonares/metabolismo , Camundongos Knockout , Oxirredução
5.
Cancer Metab ; 3: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26137220

RESUMO

BACKGROUND: Pyruvate dehydrogenase (PDH) occupies a central node of intermediary metabolism, converting pyruvate to acetyl-CoA, thus committing carbon derived from glucose to an aerobic fate rather than an anaerobic one. Rapidly proliferating tissues, including human tumors, use PDH to generate energy and macromolecular precursors. However, evidence supports the benefits of constraining maximal PDH activity under certain contexts, including hypoxia and oncogene-induced cell growth. Although PDH is one of the most widely studied enzyme complexes in mammals, its requirement for cell growth is unknown. In this study, we directly addressed whether PDH is required for mammalian cells to proliferate. RESULTS: We genetically suppressed expression of the PDHA1 gene encoding an essential subunit of the PDH complex and characterized the effects on intermediary metabolism and cell proliferation using a combination of stable isotope tracing and growth assays. Surprisingly, rapidly dividing cells tolerated loss of PDH activity without major effects on proliferative rates in complete medium. PDH suppression increased reliance on extracellular lipids, and in some cell lines, reducing lipid availability uncovered a modest growth defect that could be completely reversed by providing exogenous-free fatty acids. PDH suppression also shifted the source of lipogenic acetyl-CoA from glucose to glutamine, and this compensatory pathway required a net reductive isocitrate dehydrogenase (IDH) flux to produce a source of glutamine-derived acetyl-CoA for fatty acids. By deleting the cytosolic isoform of IDH (IDH1), the enhanced contribution of glutamine to the lipogenic acetyl-CoA pool during PDHA1 suppression was eliminated, and growth was modestly suppressed. CONCLUSIONS: Although PDH suppression substantially alters central carbon metabolism, the data indicate that rapid cell proliferation occurs independently of PDH activity. Our findings reveal that this central enzyme is essentially dispensable for growth and proliferation of both primary cells and established cell lines. We also identify the compensatory mechanisms that are activated under PDH deficiency, namely scavenging of extracellular lipids and lipogenic acetyl-CoA production from reductive glutamine metabolism through IDH1.

6.
Dev Dyn ; 243(10): 1275-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24677486

RESUMO

BACKGROUND: Vertebrate otic and epibranchial placodes develop in close proximity in response to localized fibroblast growth factor (Fgf) signaling. Although less is known about epibranchial induction, the process of otic induction in highly conserved, with important roles for Fgf3 and Fgf8 reported in all species examined. Fgf10 is also critical for otic induction in mouse, but the only zebrafish ortholog examined to date, fgf10a, is not expressed early enough to play such a role. A second zebrafish ortholog, fgf10b, has not been previously examined. RESULTS: We find that zebrafish fgf10b is expressed at tailbud stage in paraxial cephalic mesoderm beneath prospective epibranchial tissue, lateral to the developing otic placode. Knockdown of fgf10b does not affect initial otic induction but impairs subsequent accumulation of otic cells. Formation of epibranchial placodes and ganglia are also moderately impaired. Combinatorial disruption of fgf10b and fgf3 exacerbates the deficiency of otic cells and eliminates epibranchial induction entirely. Disruption of fgf10b and fgf24 also strongly reduces, but does not eliminate, epibranchial induction. CONCLUSIONS: fgf10b participates in a late phase of otic induction and, in combination with fgf3, is especially critical for epibranchial induction.


Assuntos
Região Branquial/embriologia , Orelha/embriologia , Indução Embrionária/genética , Fator 3 de Crescimento de Fibroblastos/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Mesoderma/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Região Branquial/metabolismo , Embrião não Mamífero , Fator 10 de Crescimento de Fibroblastos/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética
7.
PLoS Genet ; 8(11): e1003068, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166517

RESUMO

Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend processes bi-directionally to synapse with hair cells in the inner ear and various targets in the hindbrain. Our studies in zebrafish have shown that Fgf signaling controls multiple phases of this complex developmental process. Moderate levels of Fgf in a gradient emanating from the nascent utricular macula specify SAG neuroblasts in laterally adjacent otic epithelium. At a later stage, differentiating SAG neurons express Fgf5, which serves two functions: First, as SAG neurons accumulate, increasing levels of Fgf exceed an upper threshold that terminates the initial phase of neuroblast specification. Second, elevated Fgf delays differentiation of transit-amplifying cells, balancing the rate of progenitor renewal with neuronal differentiation. Laser-ablation of mature SAG neurons abolishes feedback-inhibition and causes precocious neuronal differentiation. Similar effects are obtained by Fgf5-knockdown or global impairment of Fgf signaling, whereas Fgf misexpression has the opposite effect. Thus Fgf signaling renders SAG development self-regulating, ensuring steady production of an appropriate number of neurons as the larva grows.


Assuntos
Orelha Interna , Fator 5 de Crescimento de Fibroblastos , Neurônios , Peixe-Zebra , Animais , Diferenciação Celular , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/inervação , Orelha Interna/metabolismo , Epitélio/metabolismo , Fator 5 de Crescimento de Fibroblastos/genética , Fator 5 de Crescimento de Fibroblastos/metabolismo , Cistos Glanglionares/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Transdução de Sinais , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
8.
Dev Biol ; 364(1): 1-10, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22327005

RESUMO

Despite the vital importance of Fgf for otic induction, previous attempts to study otic induction through Fgf misexpression have yielded widely varying and contradictory results. There are also discrepancies regarding the ability of Fgf to induce otic tissue in ectopic locations, raising questions about the sufficiency of Fgf and the degree to which other local factors enhance or restrict otic potential. Using heat shock-inducible transgenes to misexpress Fgf3 or Fgf8 in zebrafish, we found that the stage, distribution and level of misexpression strongly influence the response to Fgf. Fgf misexpression during gastrulation can inhibit or promote otic development, depending on context, whereas misexpression after gastrulation leads to expansion of otic markers throughout preplacodal ectoderm surrounding the head. Elevated Fgf also expands expression of the putative competence factor Foxi1, which is required for Fgf to expand other otic markers. Misexpression of downstream factors Pax2a or Pax8 also expands otic markers but cannot bypass the requirement for Fgf or Foxi1. Co-misexpression of Pax2/8 with Fgf8 potentiates formation of ectopic otic vesicles expressing a full range of otic markers. These findings document the variables critically affecting the response to Fgf and clarify the roles of foxi1 and pax2/8 in the otic response.


Assuntos
Orelha Interna/embriologia , Orelha Interna/metabolismo , Embrião não Mamífero/metabolismo , Fator 3 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Fator 3 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
Dev Biol ; 351(1): 90-8, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21215261

RESUMO

Vertebrate cranial placodes contribute vitally to development of sensory structures of the head. Amongst posterior placodes, the otic placode forms the inner ear whereas nearby epibranchial placodes produce sensory ganglia within branchial clefts. Though diverse in fate, these placodes show striking similarities in their early regulation. In zebrafish, both are initiated by localized Fgf signaling plus the ubiquitous competence factor Foxi1, and both express pax8 and sox3 in response. It has been suggested that Fgf initially induces a common otic/epibranchial field, which later subdivides in response to other signals. However, we find that otic and epibranchial placodes form at different times and by distinct mechanisms. Initially, Fgf from surrounding tissues induces otic expression of pax8 and sox3, which cooperate synergistically to establish otic fate. Subsequently, pax8 works with related genes pax2a/pax2b to downregulate otic expression of foxi1, a necessary step for further otic development. Additionally, pax2/8 activate otic expression of fgf24, which induces epibranchial expression of sox3. Knockdown of fgf24 or sox3 causes severe epibranchial deficiencies but has little effect on otic development. These findings clarify the roles of pax8 and sox3 and support a model whereby the otic placode forms first and induces epibranchial placodes through an Fgf-relay.


Assuntos
Região Branquial/embriologia , Orelha Interna/embriologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Fatores de Crescimento de Fibroblastos/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Gânglios/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Fator de Transcrição PAX2/fisiologia , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/fisiologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/fisiologia , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...