Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
SLAS Discov ; 29(1): 34-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37573009

RESUMO

Hepatic metabolic stability is a crucial determinant of oral bioavailability and plasma concentrations of a compound, and its measurement is important in early drug discovery. Preliminary metabolic stability estimations are commonly performed in liver microsomal fractions. At the National Center for Advancing Translational Sciences, a single-point assay in rat liver microsomes (RLM) is employed for initial stability assessment (Tier I) and a multi-point detailed stability assay is employed as a Tier II assay for promising compounds. Although the in vitro and in vivo metabolic stability of compounds typically exhibit good correlation, conflicting results may arise in certain cases. While investigating one such instance, we serendipitously found vendor-related RLM differences in metabolic stability and metabolite formation, which had implications for in vitro and in vivo correlations. In this study, we highlight the importance of considering vendor differences in hepatic metabolic stability data and discuss strategies to avoid these pitfalls.


Assuntos
Descoberta de Drogas , Fígado , Ratos , Animais , Fígado/metabolismo , Descoberta de Drogas/métodos , Microssomos Hepáticos/metabolismo , Disponibilidade Biológica , Avaliação Pré-Clínica de Medicamentos/métodos
2.
SLAS Technol ; 29(1): 100116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37923083

RESUMO

Transepithelial electrical resistance (TEER) is a widely used technique for quantifying the permeability of epithelial and endothelial cell layers. However, traditional methods of measuring TEER are limited to single timepoint measurements and can subject cells to an altered environment during the measurement. Here, we assessed the validity of TEER measurements by the ECIS TEER96 device, which is designed to take continuous TEER measurements of a cell culture system in a standard laboratory incubator. We found that the instrument accurately measures TEER across TEER values ranging from 10 to 2050 Ω*cm2 and is more accurate than the manual epithelial voltohmmeter electrode at high TEER values. Furthermore, the high-resolution measurements provided by the device allowed for a unique insight into the mechanisms and kinetics of cells in vitro. To demonstrate the continuous measurement capability of the device, we tracked the formation of an MDCKI cell monolayer until TEER plateaued. Furthermore, we treated Caco-2 monolayers with different concentrations of DMSO and the antimicrobial and surfactant compound benzethonium chloride to measure disruptions to barrier integrity. Treatment of both compounds resulted in concentration-dependent loss of barrier integrity. Our results suggest that the ECIS TEER96 device is a reliable and convenient option for measuring TEER in cell cultures and can provide valuable insights into the behavior of cells in vitro. This technology will be especially useful for increasing throughput of drug permeability assays, inflammation studies, and gaining better understanding of disease states in a cell culture system.


Assuntos
Técnicas de Cultura de Células , Células Endoteliais , Humanos , Células CACO-2 , Impedância Elétrica
3.
Front Pharmacol ; 14: 1291246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38108064

RESUMO

Efficiently circumventing the blood-brain barrier (BBB) poses a major hurdle in the development of drugs that target the central nervous system. Although there are several methods to determine BBB permeability of small molecules, the Parallel Artificial Membrane Permeability Assay (PAMPA) is one of the most common assays in drug discovery due to its robust and high-throughput nature. Drug discovery is a long and costly venture, thus, any advances to streamline this process are beneficial. In this study, ∼2,000 compounds from over 60 NCATS projects were screened in the PAMPA-BBB assay to develop a quantitative structure-activity relationship model to predict BBB permeability of small molecules. After analyzing both state-of-the-art and latest machine learning methods, we found that random forest based on RDKit descriptors as additional features provided the best training balanced accuracy (0.70 ± 0.015) and a message-passing variant of graph convolutional neural network that uses RDKit descriptors provided the highest balanced accuracy (0.72) on a prospective validation set. Finally, we correlated in vitro PAMPA-BBB data with in vivo brain permeation data in rodents to observe a categorical correlation of 77%, suggesting that models developed using data from PAMPA-BBB can forecast in vivo brain permeability. Given that majority of prior research has relied on in vitro or in vivo data for assessing BBB permeability, our model, developed using the largest PAMPA-BBB dataset to date, offers an orthogonal means to estimate BBB permeability of small molecules. We deposited a subset of our data into PubChem bioassay database (AID: 1845228) and deployed the best performing model on the NCATS Open Data ADME portal (https://opendata.ncats.nih.gov/adme/). These initiatives were undertaken with the aim of providing valuable resources for the drug discovery community.

4.
Biomed Pharmacother ; 168: 115178, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890204

RESUMO

Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder that affects lysosome-related organelles, often leading to fatal pulmonary fibrosis (PF). The search for a treatment for HPS pulmonary fibrosis (HPSPF) is ongoing. S-MRI-1867, a dual cannabinoid receptor 1 (CB1R)/inducible nitric oxide synthase (iNOS) inhibitor, has shown great promise for the treatment of several fibrotic diseases, including HPSPF. In this study, we investigated the in vitro ADME characteristics of S-MRI-1867, as well as its pharmacokinetic (PK) properties in mice, rats, dogs, and monkeys. S-MRI-1867 showed low aqueous solubility (< 1 µg/mL), high plasma protein binding (>99%), and moderate to high metabolic stability. In its preclinical PK studies, S-MRI-1867 exhibited moderate to low plasma clearance (CLp) and high steady-state volume of distribution (Vdss) across all species. Despite the low solubility and P-gp efflux, S-MRI-1867 showed great permeability and metabolic stability leading to a moderate bioavailability (21-60%) across mouse, rat, dog, and monkey. Since the R form of MRI-1867 is CB1R-inactive, we investigated the potential conversion of S-MRI-1867 to R-MRI-1867 in mice and found that the chiral conversion was negligible. Furthermore, we developed and validated a PBPK model that adequately fits the PK profiles of S-MRI-1867 in mice, rats, dogs, and monkeys using various dosing regimens. We employed this PBPK model to simulate the human PK profiles of S-MRI-1867, enabling us to inform human dose selection and support the advancement of this promising drug candidate in the treatment of HPSPF.


Assuntos
Síndrome de Hermanski-Pudlak , Fibrose Pulmonar , Humanos , Ratos , Camundongos , Animais , Cães , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/tratamento farmacológico , Síndrome de Hermanski-Pudlak/tratamento farmacológico , Projetos de Pesquisa
5.
Front Pharmacol ; 14: 1099425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113753

RESUMO

Introduction: Niclosamide (Nc) is an FDA-approved anthelmintic drug that was recently identified in a drug repurposing screening to possess antiviral activity against SARS-CoV-2. However, due to the low solubility and permeability of Nc, its in vivo efficacy was limited by its poor oral absorption. Method: The current study evaluated a novel prodrug of Nc (PDN; NCATS-SM4705) in improving in vivo exposure of Nc and predicted pharmacokinetic profiles of PDN and Nc across different species. ADME properties of the prodrug were determined in humans, hamsters, and mice, while the pharmacokinetics (PK) of PDN were obtained in mice and hamsters. Concentrations of PDN and Nc in plasma and tissue homogenates were measured by UPLC-MS/MS. A physiologically based pharmacokinetic (PBPK) model was developed based on physicochemical properties, pharmacokinetic and tissue distribution data in mice, validated by the PK profiles in hamsters and applied to predict pharmacokinetic profiles in humans. Results: Following intravenous and oral administration of PDN in mice, the total plasma clearance (CLp) and volume of distribution at steady-state (Vdss) were 0.061-0.063 L/h and 0.28-0.31 L, respectively. PDN was converted to Nc in both liver and blood, improving the systemic exposure of Nc in mice and hamsters after oral administration. The PBPK model developed for PDN and in vivo formed Nc could adequately simulate plasma and tissue concentration-time profiles in mice and plasma profiles in hamsters. The predicted human CLp/F and Vdss/F after an oral dose were 2.1 L/h/kg and 15 L/kg for the prodrug respectively. The predicted Nc concentrations in human plasma and lung suggest that a TID dose of 300 mg PDN would provide Nc lung concentrations at 8- to 60-fold higher than in vitro IC50 against SARS-CoV-2 reported in cell assays. Conclusion: In conclusion, the novel prodrug PDN can be efficiently converted to Nc in vivo and improves the systemic exposure of Nc in mice after oral administration. The developed PBPK model adequately depicts the mouse and hamster pharmacokinetic and tissue distribution profiles and highlights its potential application in the prediction of human pharmacokinetic profiles.

6.
Redox Biol ; 60: 102611, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36709665

RESUMO

NADPH oxidases (NOX's), and the reactive oxygen species (ROS) they produce, play an important role in host defense, thyroid hormone synthesis, apoptosis, gene regulation, angiogenesis and other processes. However, overproduction of ROS by these enzymes is associated with cardiovascular disease, fibrosis, traumatic brain injury (TBI) and other diseases. Structural similarities between NOX's have complicated development of specific inhibitors. Here, we report development of NCATS-SM7270, a small molecule optimized from GSK2795039, that inhibited NOX2 in primary human and mouse granulocytes. NCATS-SM7270 specifically inhibited NOX2 and had reduced inhibitory activity against xanthine oxidase in vitro. We also studied the role of several NOX isoforms during mild TBI (mTBI) and demonstrated that NOX2 and, to a lesser extent, NOX1 deficient mice are protected from mTBI pathology, whereas injury is exacerbated in NOX4 knockouts. Given the pathogenic role played by NOX2 in mTBI, we treated mice transcranially with NCATS-SM7270 after injury and revealed a dose-dependent reduction in mTBI induced cortical cell death. This inhibitor also partially reversed cortical damage observed in NOX4 deficient mice following mTBI. These data demonstrate that NCATS-SM7270 is an improved and specific inhibitor of NOX2 capable of protecting mice from NOX2-dependent cell death associated with mTBI.


Assuntos
Lesões Encefálicas Traumáticas , NADPH Oxidases , Humanos , Camundongos , Animais , NADPH Oxidase 2/genética , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , NADPH Oxidase 1/genética
7.
J Chem Inf Model ; 63(3): 846-855, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36719788

RESUMO

Inappropriate use of prescription drugs is potentially more harmful in fetuses/neonates than in adults. Cytochrome P450 (CYP) 3A subfamily undergoes developmental changes in expression, such as a transition from CYP3A7 to CYP3A4 shortly after birth, which provides a potential way to distinguish medication effects on fetuses/neonates and adults. The purpose of this study was to build first-in-class predictive models for both inhibitors and substrates of CYP3A7/CYP3A4 using chemical structure analysis. Three metrics were used to evaluate model performance: area under the receiver operating characteristic curve (AUC-ROC), balanced accuracy (BA), and Matthews correlation coefficient (MCC). The performance varied for each CYP3A7/CYP3A4 inhibitor/substrate model depending on the data set type, model type, rebalancing method, and specific feature set. For the active inhibitor/substrate data set, the optimal models achieved AUC-ROC values ranging from 0.77 ± 0.01 to 0.84 ± 0.01. For the selective inhibitor/substrate data set, the optimal models achieved AUC-ROC values ranging from 0.72 ± 0.02 to 0.79 ± 0.04. The predictive power of the optimal models was validated by compounds with known potencies as CYP3A7/CYP3A4 inhibitors or substrates. In addition, we identified structural features significant for CYP3A7/CYP3A4 selective or common inhibitors and substrates. In summary, the top performing models can be further applied as a tool to rapidly evaluate the safety and efficacy of new drugs separately for fetuses/neonates and adults. The significant structural features could guide the design of new therapeutic drugs as well as aid in the optimization of existing medicine for fetuses/neonates.


Assuntos
Citocromo P-450 CYP3A , Recém-Nascido , Adulto , Humanos , Citocromo P-450 CYP3A/metabolismo , Área Sob a Curva
8.
Front Pharmacol ; 13: 918083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052127

RESUMO

Preclinical pharmacokinetics (PK) and In Vitro ADME properties of GS-441524, a potential oral agent for the treatment of Covid-19, were studied. GS-441524 was stable in vitro in liver microsomes, cytosols, and hepatocytes of mice, rats, monkeys, dogs, and humans. The plasma free fractions of GS-441524 were 62-78% across all studied species. The in vitro transporter study results showed that GS-441524 was a substrate of MDR1, BCRP, CNT3, ENT1, and ENT2; but not a substrate of CNT1, CNT2, and ENT4. GS-441524 had a low to moderate plasma clearance (CLp), ranging from 4.1 mL/min/kg in dogs to 26 mL/min/kg in mice; the steady state volume distribution (Vdss) ranged from 0.9 L/kg in dogs to 2.4 L/kg in mice after IV administration. Urinary excretion appeared to be the major elimination process for GS-441524. Following oral administration, the oral bioavailability was 8.3% in monkeys, 33% in rats, 39% in mice, and 85% in dogs. The PK and ADME properties of GS-441524 support its further development as an oral drug candidate.

9.
Front Pharmacol ; 13: 899536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847040

RESUMO

Cytochrome P450 (CYP) 3A7 is one of the major xenobiotic metabolizing enzymes in human embryonic, fetal, and newborn liver. CYP3A7 expression has also been observed in a subset of the adult population, including pregnant women, as well as in various cancer patients. The characterization of CYP3A7 is not as extensive as other CYPs, and health authorities have yet to provide guidance towards DDI assessment. To identify potential CYP3A7-specific molecules, we used a P450-Glo CYP3A7 enzyme assay to screen a library of ∼5,000 compounds, including FDA-approved drugs and drug-like molecules, and compared these screening data with that from a P450-Glo CYP3A4 assay. Additionally, a subset of 1,000 randomly selected compounds were tested in a metabolic stability assay. By combining the data from the qHTS P450-Glo and metabolic stability assays, we identified several chemical features important for CYP3A7 selectivity. Halometasone was chosen for further evaluation as a potential CYP3A7-selective inhibitor using molecular docking. From the metabolic stability assay, we identified twenty-two CYP3A7-selective substrates over CYP3A4 in supersome setting. Our data shows that CYP3A7 has ligand promiscuity, much like CYP3A4. Furthermore, we have established a large, high-quality dataset that can be used in predictive modeling for future drug metabolism and interaction studies.

10.
Bioorg Med Chem ; 56: 116588, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030421

RESUMO

Membrane permeability plays an important role in oral drug absorption. Caco-2 and Madin-Darby Canine Kidney (MDCK) cell culture systems have been widely used for assessing intestinal permeability. Since most drugs are absorbed passively, Parallel Artificial Membrane Permeability Assay (PAMPA) has gained popularity as a low-cost and high-throughput method in early drug discovery when compared to high-cost, labor intensive cell-based assays. At the National Center for Advancing Translational Sciences (NCATS), PAMPA pH 5 is employed as one of the Tier I absorption, distribution, metabolism, and elimination (ADME) assays. In this study, we have developed a quantitative structure activity relationship (QSAR) model using our ∼6500 compound PAMPA pH 5 permeability dataset. Along with ensemble decision tree-based methods such as Random Forest and eXtreme Gradient Boosting, we employed deep neural network and a graph convolutional neural network to model PAMPA pH 5 permeability. The classification models trained on a balanced training set provided accuracies ranging from 71% to 78% on the external set. Of the four classifiers, the graph convolutional neural network that directly operates on molecular graphs offered the best classification performance. Additionally, an ∼85% correlation was obtained between PAMPA pH 5 permeability and in vivo oral bioavailability in mice and rats. These results suggest that data from this assay (experimental or predicted) can be used to rank-order compounds for preclinical in vivo testing with a high degree of confidence, reducing cost and attrition as well as accelerating the drug discovery process. Additionally, experimental data for 486 compounds (PubChem AID: 1645871) and the best models have been made publicly available (https://opendata.ncats.nih.gov/adme/).


Assuntos
Betametasona/farmacocinética , Dexametasona/farmacocinética , Ranitidina/farmacocinética , Verapamil/farmacocinética , Administração Oral , Animais , Betametasona/administração & dosagem , Disponibilidade Biológica , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Dexametasona/administração & dosagem , Cães , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Células Madin Darby de Rim Canino , Camundongos , Estrutura Molecular , Redes Neurais de Computação , Ranitidina/administração & dosagem , Ratos , Relação Estrutura-Atividade , Verapamil/administração & dosagem
11.
Braz. J. Pharm. Sci. (Online) ; 58: e18881, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420489

RESUMO

Abstract Tuberculosis treatment consists of a drug combination, where isoniazid is the core drug and alcoholism is a factor highly related to poor patient compliance with the therapy. CYP2E1 is an enzyme involved both in the metabolism of ethanol and in the formation of hepatotoxic compounds during the metabolism of isoniazid. The shared metabolism pathway accounts for the possibility of pharmacokinetic interaction in cases of concomitant alcohol use during tuberculosis treatment. The aim of this study was to evaluate the effect of repeated exposure of Wistar rats (males, 250 g, n=6) to ethanol on the pharmacokinetics of a single dose of isoniazid in combination with pyrazinamide and rifampicin (100 mg/kg, 350 mg/kg and 100 mg/kg, respectively). An animal group received the combination of drugs and ethanol and was compared to a control group, which received the combination of drugs without exposure to ethanol. The plasma concentrations of isoniazid were determined by a UHPLC/UV bioanalytical method that was previously validated. Biochemical markers of liver function were measured to assess potential damage. A lower elimination half-life of isoniazid was observed in the ethanol group than in the control group (t1/2 0.91 h versus 1.34 h). There was no evidence of hepatotoxicity through the biomarker enzymes evaluated. The results allow us to infer that although there are no biochemical changes related to liver damage, there is a slight influence of ethanol exposure on the pharmacokinetic profile of isoniazid. This change may have a relevant impact on the efficacy of isoniazid in the outcome of tuberculosis treatment.


Assuntos
Animais , Masculino , Ratos , Farmacocinética , Etanol/efeitos adversos , Isoniazida/análise , Tuberculose/patologia , Biomarcadores/análise , Citocromo P-450 CYP2E1/farmacologia
12.
J Pharm Biomed Anal ; 201: 114102, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33992989

RESUMO

Overproduction of reactive oxygen species (ROS) can lead to several disease states, such as diabetic nephropathy and amyotrophic lateral sclerosis. One of the most studied mechanisms to inhibit the over production of ROS is the inhibition of NADPH oxidase (NOX) enzymes, which catalyze the conversion of cytoplasmic NADPH to NADP+, resulting in the formation of superoxide anions. GSK2795039 has been shown to selectively inhibit the NOX2 isoform, however, clearance of the compound was high in rats and mice. Therefore, identifying metabolic soft spots would be crucial in guiding the optimization process to improve its pharmacokinetic properties. GSK2795039 (10 µM) was incubated in the presence of mouse, rat and human liver microsomal (1 mg/mL) and cytosolic (2 mg/mL) fractions and appropriate co-factors, followed by MSe fragment analysis to identify metabolic soft spots. GSK2795039 showed marked species differences in its metabolism. The alkyl side chains and indoline moiety were the most common sites of biotransformation. The compound was identified to be an aldehyde oxidase substrate. Additionally, unique human metabolites were observed in vitro. Our study sheds light on structure optimization opportunities for developing improved NOX2 inhibitors, and it will help overcome the challenges involved in preclinical species selection for its safety evaluations.


Assuntos
NADPH Oxidases , Preparações Farmacêuticas , Aminopiridinas , Animais , Camundongos , Ratos , Espécies Reativas de Oxigênio , Sulfonamidas
13.
J Biomol Struct Dyn ; 39(3): 1017-1028, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32028848

RESUMO

The objectives of this study were to extract and purify Bixin from the seeds of Bixa orellana and to evaluate its hypoglycemic activity in vivo, as well as, to conduct an in silico study of selectivity on peroxisome proliferator-activated receptors via molecular docking and molecular dynamics simulations. Oral administration of Bixin (10 mg/kg) significantly reduced their glucose level that was alloxan-induced diabetic rats. Bixin showed in silico selectivity on peroxisome proliferator-activated receptors (PPARs), particularly by the peroxisome proliferator-activated receptor gamma (PPARγ), which supports the hypoglycemic activity of Bixin. From the results obtained, it can be inferred that Bixin presents hypoglycemic characteristics, which was confirmed by the results obtained from the in vivo and in silico tests. Bixin may act by other pathways to control blood glucose and thus it is possible that it presents a different toxicity profile than troglitazone, rosiglitazone and pioglitazone. However, more studies on the activity and toxicity of Bixin are needed to evaluate for further clinical use. Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus Experimental , Tiazolidinedionas , Aloxano , Animais , Carotenoides , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , PPAR gama , Ratos
14.
J Med Chem ; 63(19): 10984-11011, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32902275

RESUMO

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Pirazóis/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Camundongos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Med Chem ; 63(8): 4256-4292, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32212730

RESUMO

A series of quinazolin-4-one based hydroxamic acids was rationally designed and synthesized as novel dual PI3K/HDAC inhibitors by incorporating an HDAC pharmacophore into a PI3K inhibitor (Idelalisib) via an optimized linker. Several of these dual inhibitors were highly potent (IC50 < 10 nM) and selective against PI3Kγ, δ and HDAC6 enzymes and exhibited good antiproliferative activity against multiple cancer cell lines. The lead compound 48c, induced necrosis in several mutant and FLT3-resistant AML cell lines and primary blasts from AML patients, while showing no cytotoxicity against normal PBMCs, NIH3T3, and HEK293 cells. Target engagement of PI3Kδ and HDAC6 by 48c was demonstrated in MV411 cells using the cellular thermal shift assay (CETSA). Compound 48c showed good pharmacokinetics properties in mice via intraperitoneal (ip) administration and provides a means to examine the biological effects of inhibiting these two important enzymes with a single molecule, either in vitro or in vivo.


Assuntos
Desenho de Fármacos , Inibidores de Histona Desacetilases/síntese química , Ácidos Hidroxâmicos/síntese química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Quinazolinonas/síntese química , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Estrutura Terciária de Proteína , Quinazolinonas/farmacologia , Ratos
16.
Cancer Chemother Pharmacol ; 85(4): 805-816, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32185484

RESUMO

PURPOSE: Metarrestin is a first-in-class pyrrolo-pyrimidine-derived small molecule targeting a marker of genome organization associated with metastasis and is currently in preclinical development as an anti-cancer agent. Here, we report the in vitro ADME characteristics and in vivo pharmacokinetic behavior of metarrestin. METHODS: Solubility, permeability, and efflux ratio as well as in vitro metabolism of metarrestin in hepatocytes, liver microsomes and S9 fractions, recombinant cytochrome P450 (CYP) enzymes, and potential for CYP inhibition were evaluated. Single dose pharmacokinetic profiles after intravenous and oral administration in mice, rat, dog, monkey, and mini-pig were obtained. Simple allometric scaling was applied to predict human pharmacokinetics. RESULTS: Metarrestin had an aqueous solubility of 150 µM at pH 7.4, high permeability in PAMPA and moderate efflux ratio in Caco-2 assays. The compound was metabolically stable in liver microsomes, S9 fractions, and hepatocytes from six species, including human. Metarrestin is a CYP3A4 substrate and, in mini-pigs, is also directly glucuronidated. Metarrestin did not show cytochrome P450 inhibitory activity. Plasma concentration-time profiles showed low to moderate clearance, ranging from 0.6 mL/min/kg in monkeys to 48 mL/min/kg in mice and moderate to high volume of distribution, ranging from 1.5 L/kg in monkeys to 17 L/kg in mice. Metarrestin has greater than 80% oral bioavailability in all species tested. The excretion of unchanged parent drug in urine was < 5% in dogs and < 1% in monkeys over collection periods of ≥ 144 h; in bile-duct cannulated rats, the excretion of unchanged drug was < 1% in urine and < 2% in bile over a collection period of 48 h. CONCLUSIONS: Metarrestin is a low clearance compound which has good bioavailability and large biodistribution after oral administration. Biotransformation appears to be the major elimination process for the parent drug. In vitro data suggest a low drug-drug interaction potential on CYP-mediated metabolism. Overall favorable ADME and PK properties support metarrestin's progression to clinical investigation.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Microssomos Hepáticos/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Pirróis/administração & dosagem , Pirróis/farmacocinética , Administração Oral , Animais , Biotransformação , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Feminino , Haplorrinos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Suínos , Porco Miniatura , Distribuição Tecidual
17.
Mini Rev Med Chem ; 20(9): 754-767, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31686637

RESUMO

Parkinson's Disease (PD) is the second most common neurodegenerative disease in the elderly population, with a higher prevalence in men, independent of race and social class; it affects approximately 1.5 to 2.0% of the elderly population over 60 years and 4% for those over 80 years of age. PD is caused by the necrosis of dopaminergic neurons in the substantia nigra, which is the brain region responsible for the synthesis of the neurotransmitter dopamine (DA), resulting in its decrease in the synaptic cleft. The monoamine oxidase B (MAO-B) degrades dopamine, promoting the glutamate accumulation and oxidative stress with the release of free radicals, causing excitotoxicity. The PD symptoms are progressive physical limitations such as rigidity, bradykinesia, tremor, postural instability and disability in functional performance. Considering that there are no laboratory tests, biomarkers or imaging studies to confirm the disease, the diagnosis of PD is made by analyzing the motor features. There is no cure for PD, and the pharmacological treatment consists of a dopaminergic supplement with levodopa, COMT inhibitors, anticholinergics agents, dopaminergic agonists, and inhibitors of MAO-B, which basically aims to control the symptoms, enabling better functional mobility and increasing life expectancy of the treated PD patients. Due to the importance and increasing prevalence of PD in the world, this study reviews information on the pathophysiology, symptomatology as well as the most current and relevant treatments of PD patients.


Assuntos
Dopaminérgicos/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Antagonistas Colinérgicos/uso terapêutico , Agonistas de Dopamina/uso terapêutico , Humanos , Levodopa/uso terapêutico , Expectativa de Vida , Inibidores da Monoaminoxidase/uso terapêutico , Estresse Oxidativo , Doença de Parkinson/diagnóstico
18.
Front Pharmacol ; 10: 234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068801

RESUMO

Currently no approved treatment exists for fibrodysplasia ossificans progressiva (FOP) patients, and disease progression results in severe restriction of joint function and premature mortality. LDN-193189 has been demonstrated to be efficacious in a mouse FOP disease model after oral administration. To support species selection for drug safety evaluation and to guide structure optimization for back-up compounds, in vitro metabolism of LDN-193189 was investigated in liver microsome and cytosol fractions of mouse, rat, dog, rabbit, monkey and human. Metabolism studies included analysis of reactive intermediate formation using glutathione and potassium cyanide (KCN) and analysis of non-P450 mediated metabolites in cytosol fractions of various species. Metabolite profiles and metabolic soft spots of LDN-193189 were elucidated using LC/UV and mass spectral techniques. The in vitro metabolism of LDN-193189 was significantly dependent on aldehyde oxidase, with formation of the major NIH-Q55 metabolite. The piperazinyl moiety of LDN-193189 was liable to NADPH-dependent metabolism which generated reactive iminium intermediates, as confirmed through KCN trapping experiments, and aniline metabolites (M337 and M380), which brought up potential drug safety concerns. Subsequently, strategies were employed to avoid metabolic liabilities leading to the synthesis of Compounds 1, 2, and 3. This study demonstrated the importance of metabolite identification for the discovery of novel and safe drug candidates for the treatment of FOP and helped medicinal chemists steer away from potential metabolic liabilities.

19.
Curr Med Chem ; 25(26): 3141-3159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30191777

RESUMO

Dementia is characterized by the impairment of cognition and behavior of people over 65 years. Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the world, as approximately 47 million people are affected by this disease and the tendency is that this number will increase to 62% by 2030. Two microscopic features assist in the characterization of the disease, the amyloid plaques and neurofibrillary agglomerates. All these factors are responsible for the slow and gradual deterioration of memory that affect language, personality or cognitive control. For the AD diagnosis, neuropsychological tests are performed in different spheres of cognitive functions but since not all cognitive functions may be affected, cerebrospinal fluid biomarkers are used along with these tests. To date, cholinesterase inhibitors are used as treatment, they are the only drugs that have shown significant improvements in the cognitive functions of AD patients. Despite the proven effectiveness of cholinesterase inhibitors, an AD carrier, even while being treated, is continually subjected to progressive degeneration of the neuronal tissue. For this reason, other biochemical pathways associated with the pathophysiology of AD have been explored as alternatives to the treatment of this condition such as inhibition of ß-secretase and glycogen synthase kinase-3ß. The present study aims to conduct a review of the epidemiology, pathophysiology, symptoms, diagnosis and treatment of Alzheimer's disease, emphasizing the research and development of new therapeutic approaches.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase/farmacologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos
20.
Biometals ; 30(3): 321-334, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28303361

RESUMO

Three ruthenium(II) phosphine/diimine/picolinate complexes were selected aimed at investigating anticancer activity against several cancer cell lines and the capacity of inhibiting the supercoiled DNA relaxation mediated by human topoisomerase IB (Top 1). The structure-lipophilicity relationship in membrane permeability using the Caco-2 cells have also been evaluated in this study. SCAR 5 was found to present 45 times more cytotoxicity against breast cancer cell when compared to cisplatin. SCAR 4 and 5 were both found to be capable of inhibiting the supercoiled DNA relaxation mediated by Top 1. Interaction studies showed that SCAR 4 and 5 can bind to DNA through electrostatic interactions while SCAR 6 is able to bind covalently to DNA. The complexes SCAR were found to interact differently with bovine serum albumin (BSA) suggesting hydrophobic interactions with albumin. The permeability of all complexes was seen to be dependent on their lipophilicity. SCAR 4 and 5 exhibited high membrane permeability (P app  > 10 × 10-6 cm·s-1) in the presence of BSA. The complexes may pass through Caco-2 monolayer via passive diffusion mechanism and our results suggest that lipophilicity and interaction with BSA may influence the complexes permeation. In conclusion, we demonstrated that complexes have powerful pharmacological activity, with different results for each complex depending on the combination of their ligands.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Compostos Organometálicos/farmacologia , Rutênio/farmacologia , Inibidores da Topoisomerase/administração & dosagem , Inibidores da Topoisomerase/farmacologia , Administração Oral , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/antagonistas & inibidores , DNA/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Rutênio/administração & dosagem , Rutênio/química , Soroalbumina Bovina/antagonistas & inibidores , Soroalbumina Bovina/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...