Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 35(12): e22025, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34758144

RESUMO

Mepyramine, a first-generation antihistamine targeting the histamine H(1) receptor, was extensively prescribed to patients suffering from allergic reactions and urticaria. Serious adverse effects, especially in case of overdose, were frequently reported, including drowsiness, impaired thinking, convulsion, and coma. Many of these side effects were associated with the blockade of histaminergic or cholinergic receptors. Here we show that mepyramine directly inhibits a variety of voltage-gated sodium channels, including the Tetrodotoxin-sensitive isoforms and the main isoforms (Nav1.7, Nav1.8, and Nav1.9) of nociceptors. Estimated IC50 were within the range of drug concentrations detected in poisoned patients. Mepyramine inhibited sodium channels through fast- or slow-inactivated state preference depending on the isoform. Moreover, mepyramine inhibited the firing responses of C- and Aß-type nerve fibers in ex vivo skin-nerve preparations. Locally applied mepyramine had analgesic effects on the scorpion toxin-induced excruciating pain and produced pain relief in acute, inflammatory, and chronic pain models. Collectively, these data provide evidence that mepyramine has the potential to be developed as a topical analgesic agent.


Assuntos
Artrite Experimental/complicações , Gânglios Espinais/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/fisiologia , Nociceptores/efeitos dos fármacos , Dor/tratamento farmacológico , Pirilamina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.8/química , Nociceptores/metabolismo , Nociceptores/patologia , Dor/etiologia , Dor/metabolismo , Dor/patologia
3.
EMBO J ; 37(8)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29459435

RESUMO

Cholesterol is a major lipid component of the mammalian plasma membrane. While much is known about its metabolism, its transport, and its role in atherosclerotic vascular disease, less is known about its role in neuronal pathophysiology. This study reveals an unexpected function of cholesterol in controlling pain transmission. We show that inflammation lowers cholesterol content in skin tissue and sensory DRG culture. Pharmacological depletion of cellular cholesterol entails sensitization of nociceptive neurons and promotes mechanical and thermal hyperalgesia through the activation of voltage-gated Nav1.9 channels. Inflammatory mediators enhance the production of reactive oxygen species and induce partitioning of Nav1.9 channels from cholesterol-rich lipid rafts to cholesterol-poor non-raft regions of the membrane. Low-cholesterol environment enhances voltage-dependent activation of Nav1.9 channels leading to enhanced neuronal excitability, whereas cholesterol replenishment reversed these effects. Consistently, we show that transcutaneous delivery of cholesterol alleviates hypersensitivity in animal models of acute and chronic inflammatory pain. In conclusion, our data establish that membrane cholesterol is a modulator of pain transmission and shed a new light on the relationship between cholesterol homeostasis, inflammation, and pain.


Assuntos
Membrana Celular/fisiologia , Colesterol/fisiologia , Inflamação/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.9/fisiologia , Dor/fisiopatologia , Animais , Gânglios Espinais/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptores/fisiologia
4.
Cell Rep ; 11(7): 1067-78, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25959819

RESUMO

Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9(-/-) neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions.


Assuntos
Hiperalgesia/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Percepção da Dor/fisiologia , Sensação Térmica/fisiologia , Animais , Temperatura Baixa , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptores/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
5.
Pain ; 154(8): 1204-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23685008

RESUMO

Voltage-gated Na(+) channels (Nav) are the targets of a variety of scorpion toxins. Here, we investigated the effects of Amm VIII, a toxin isolated from the venom of the scorpion Androctonus mauretanicus mauretanicus, on pain-related behaviours in mice. The effects of Amm VIII were compared with the classic scorpion α-toxin AaH II from Androctonus australis. Contrary to AaH II, intraplantar injection of Amm VIII at relatively high concentrations caused little nocifensive behaviours. However, Amm VIII induced rapid mechanical and thermal pain hypersensitivities. We evaluated the toxins' effects on Nav currents in nociceptive dorsal root ganglion (DRG) neurons and immortalized DRG neuron-derived F11 cells. Amm VIII and AaH II enhanced tetrodotoxin-sensitive (TTX-S) Nav currents in DRG and F11 cells. Both toxins impaired fast inactivation and negatively shifted activation. AaH II was more potent than Amm VIII at modulating TTX-S Nav currents with EC50 of 5 nM and 1 µM, respectively. AaH II and Amm VIII also impaired fast inactivation of Nav1.7, with EC50 of 6.8 nM and 1.76 µM, respectively. Neither Nav1.8 nor Nav1.9 was affected by the toxins. AaH II and Amm VIII reduced first spike latency and lowered action potential threshold. Amm VIII was less efficient than AaH II in increasing the gain of the firing frequency-stimulation relationship. In conclusion, our data show that Amm VIII, although less potent than AaH II, acts as a gating-modifier peptide reminiscent of classic α-toxins, and suggest that its hyperalgesic effects can be ascribed to gain-of-function of TTX-S Na(+) channels in nociceptors.


Assuntos
Hipersensibilidade/etiologia , Dor/induzido quimicamente , Venenos de Escorpião/toxicidade , Canais de Sódio/metabolismo , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Ratos , Venenos de Escorpião/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/efeitos dos fármacos , Tetrodotoxina/farmacologia , Tetrodotoxina/uso terapêutico
6.
Neuron ; 77(5): 899-914, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23473320

RESUMO

Molecular determinants of threshold sensitivity of mammalian mechanoreceptors are unknown. Here, we identify a mechanosensitive (MS) K(+) current (IKmech) that governs mechanical threshold and adaptation of distinct populations of mechanoreceptors. Toxin profiling and transgenic mouse studies indicate that IKmech is carried by Kv1.1-Kv1.2 heteromers. Mechanosensitivity is attributed to Kv1.1 subunits, through facilitation of voltage-dependent open probability. IKmech is expressed in high-threshold C-mechano-nociceptors (C-HTMRs) and Aß-mechanoreceptors, but not in low-threshold C-mechanoreceptors. IKmech opposes depolarization induced by slow/ultraslow MS cation currents in C-HTMRs, thereby shifting mechanical threshold for firing to higher values. However, due to kinetics mismatch with rapidly-adapting MS cation currents, IKmech tunes firing adaptation but not mechanical threshold in Aß-mechanoreceptors. Expression of Kv1.1 dominant negative or inhibition of Kv1.1/IKmech caused severe mechanical allodynia but not heat hyperalgesia. By balancing the activity of excitatory mechanotransducers, Kv1.1 acts as a mechanosensitive brake that regulates mechanical sensitivity of fibers associated with mechanical perception.


Assuntos
Canal de Potássio Kv1.1/fisiologia , Dor/fisiopatologia , Tato/fisiologia , Animais , Interpretação Estatística de Dados , Canais de Potássio Éter-A-Go-Go/fisiologia , Hiperalgesia/fisiopatologia , Imuno-Histoquímica , Canais de Potássio KCNQ/fisiologia , Canal de Potássio Kv1.1/genética , Mecanorreceptores/fisiologia , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Fibras Nervosas/fisiologia , Nociceptores/fisiologia , Limiar da Dor/fisiologia , Técnicas de Patch-Clamp , Estimulação Física , Canais de Potássio Cálcio-Ativados/fisiologia , Células Receptoras Sensoriais/fisiologia , Limiar Sensorial/fisiologia , Transdução de Sinais/fisiologia
7.
PLoS One ; 6(8): e23083, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21857998

RESUMO

Inflammation is known to be responsible for the sensitization of peripheral sensory neurons, leading to spontaneous pain and invalidating pain hypersensitivity. Given its role in regulating neuronal excitability, the voltage-gated Nav1.9 channel is a potential target for the treatment of pathological pain, but its implication in inflammatory pain is yet not fully described. In the present study, we examined the role of the Nav1.9 channel in acute, subacute and chronic inflammatory pain using Nav1.9-null mice and Nav1.9 knock-down rats. In mice we found that, although the Nav1.9 channel does not contribute to basal pain thresholds, it plays an important role in heat pain hypersensitivity induced by subacute paw inflammation (intraplantar carrageenan) and chronic ankle inflammation (complete Freund's adjuvant-induced monoarthritis). We showed for the first time that Nav1.9 also contributes to mechanical hypersensitivity in both models, as assessed using von Frey and dynamic weight bearing tests. Consistently, antisense-based Nav1.9 gene silencing in rats reduced carrageenan-induced heat and mechanical pain hypersensitivity. While no changes in Nav1.9 mRNA levels were detected in dorsal root ganglia (DRGs) during subacute and chronic inflammation, a significant increase in Nav1.9 immunoreactivity was observed in ipsilateral DRGs 24 hours following carrageenan injection. This was correlated with an increase in Nav1.9 immunolabeling in nerve fibers surrounding the inflamed area. No change in Nav1.9 current density could be detected in the soma of retrolabeled DRG neurons innervating inflamed tissues, suggesting that newly produced channels may be non-functional at this level and rather contribute to the observed increase in axonal transport. Our results provide evidence that Nav1.9 plays a crucial role in the generation of heat and mechanical pain hypersensitivity, both in subacute and chronic inflammatory pain models, and bring new elements for the understanding of its regulation in those models.


Assuntos
Hiperalgesia/fisiopatologia , Inflamação/fisiopatologia , Dor/fisiopatologia , Canais de Sódio/fisiologia , Animais , Artrite Experimental/fisiopatologia , Carragenina , Doença Crônica , Edema/induzido quimicamente , Edema/fisiopatologia , Membro Anterior/efeitos dos fármacos , Membro Anterior/metabolismo , Membro Anterior/fisiopatologia , Gânglios Espinais/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Membro Posterior/efeitos dos fármacos , Membro Posterior/metabolismo , Membro Posterior/fisiopatologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.9 , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Receptoras Sensoriais/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Fatores de Tempo
8.
EMBO Rep ; 9(5): 472-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18323855

RESUMO

Although several protein-protein interactions have been reported between transient receptor potential (TRP) channels, they are all known to occur exclusively between members of the same group. The only intergroup interaction described so far is that of TRPP2 and TRPC1; however, the significance of this interaction is unknown. Here, we show that TRPP2 and TRPC1 assemble to form a channel with a unique constellation of new and TRPP2/TRPC1-specific properties. TRPP2/TRPC1 is activated in response to G-protein-coupled receptor activation and shows a pattern of single-channel conductance, amiloride sensitivity and ion permeability distinct from that of TRPP2 or TRPC1 alone. Native TRPP2/TRPC1 activity is shown in kidney cells by complementary gain-of-function and loss-of-function experiments, and its existence under physiological conditions is supported by colocalization at the primary cilium and by co-immunoprecipitation from kidney membranes. Identification of the heteromultimeric TRPP2/TRPC1 channel has implications in mechanosensation and cilium-based Ca(2+) signalling.


Assuntos
Canais Iônicos/biossíntese , Subunidades Proteicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPP/química , Amilorida/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Cílios/metabolismo , Rim/citologia , Células LLC-PK1 , Elementos da Série dos Lantanídeos/farmacologia , Camundongos , Agonistas Muscarínicos/farmacologia , Neurônios/citologia , Oxotremorina/análogos & derivados , Oxotremorina/farmacologia , Ratos , Bloqueadores dos Canais de Sódio/farmacologia , Suínos , Canais de Cátion TRPP/metabolismo
9.
J Gen Physiol ; 131(3): 211-25, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18270172

RESUMO

Altered function of Na+ channels is responsible for increased hyperexcitability of primary afferent neurons that may underlie pathological pain states. Recent evidence suggests that the Nav1.9 subunit is implicated in inflammatory but not acute pain. However, the contribution of Nav1.9 channels to the cellular events underlying nociceptor hyperexcitability is still unknown, and there remains much uncertainty as to the biophysical properties of Nav1.9 current and its modulation by inflammatory mediators. Here, we use gene targeting strategy and computer modeling to identify Nav1.9 channel current signature and its impact on nociceptors' firing patterns. Recordings using internal fluoride in small DRG neurons from wild-type and Nav1.9-null mutant mice demonstrated that Nav1.9 subunits carry the TTX-resistant "persistent" Na+ current called NaN. Nav1.9(-/-) nociceptors showed no significant change in the properties of the slowly inactivating TTX-resistant SNS/Nav1.8 current. The loss in Nav1.9-mediated Na+ currents was associated with the inability of small DRG neurons to generate a large variety of electrophysiological behaviors, including subthreshold regenerative depolarizations, plateau potentials, active hyperpolarizing responses, oscillatory bursting discharges, and bistable membrane behaviors. We further investigated, using CsCl- and KCl-based pipette solutions, whether G-protein signaling pathways and inflammatory mediators upregulate the NaN/Nav1.9 current. Bradykinin, ATP, histamine, prostaglandin-E2, and norepinephrine, applied separately at maximal concentrations, all failed to modulate the Nav1.9 current. However, when applied conjointly as a soup of inflammatory mediators they rapidly potentiated Nav1.9 channel activity, generating subthreshold amplification and increased excitability. We conclude that Nav1.9 channel, the molecular correlate of the NaN current, is potentiated by the concerted action of inflammatory mediators that may contribute to nociceptors' hyperexcitability during peripheral inflammation.


Assuntos
Neuropeptídeos/metabolismo , Nociceptores/metabolismo , Canais de Sódio/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Bradicinina/metabolismo , Bradicinina/farmacologia , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Relação Dose-Resposta a Droga , Eletrofisiologia , Gânglios Espinais/citologia , Regulação da Expressão Gênica , Histamina/metabolismo , Histamina/farmacologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.9 , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeos/genética , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Canais de Sódio/genética , Tetrodotoxina/metabolismo , Tetrodotoxina/farmacologia , Regulação para Cima
10.
Mol Cell Neurosci ; 35(1): 138-52, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17363266

RESUMO

The Nav1.9 sodium channel is expressed in nociceptive DRG neurons where it contributes to spontaneous pain behavior after peripheral inflammation. Here, we used a newly developed antibody to investigate the distribution of Nav1.9 in rat and mouse trigeminal ganglion (TG) nerve endings and in enteric nervous system (ENS). In TGs, Nav1.9 was expressed in the soma of small- and medium-sized, peripherin-positive neurons. Nav1.9 was present along trigeminal afferent fibers and at terminals in lip skin and dental pulp. In the ENS, Nav1.9 was detected within the soma and proximal axons of sensory, Dogiel type II, myenteric and submucosal neurons. Immunological data were correlated with the detection of persistent TTX-resistant Na(+) currents sharing similar properties in DRG, TG and myenteric neurons. Collectively, our data support a potential role of Nav1.9 in the transmission of trigeminal pain and the regulation of intestinal reflexes. Nav1.9 might therefore constitute a molecular target for therapeutic treatments of orofacial pain and gastrointestinal syndromes.


Assuntos
Dor Facial/fisiopatologia , Plexo Mientérico/citologia , Neurônios Aferentes/fisiologia , Neuropeptídeos/genética , Canais de Sódio/genética , Plexo Submucoso/citologia , Gânglio Trigeminal/citologia , Sequência de Aminoácidos , Animais , Axônios/fisiologia , Polpa Dentária/inervação , Dor Facial/metabolismo , Lábio/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.9 , Neurônios Aferentes/ultraestrutura , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Nociceptores/fisiologia , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Reflexo/fisiologia , Pele/inervação , Canais de Sódio/química , Canais de Sódio/metabolismo
11.
EMBO Rep ; 7(8): 787-93, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880824

RESUMO

TRPP2 is a member of the transient receptor potential (TRP) superfamily of cation channels, which is mutated in autosomal dominant polycystic kidney disease (ADPKD). TRPP2 is thought to function with polycystin 1-a large integral protein-as part of a multiprotein complex involved in transducing Ca(2+)-dependent information. TRPP2 has been implicated in various biological functions including cell proliferation, sperm fertilization, mating behaviour, mechanosensation and asymmetric gene expression. Although its function as a Ca(2+)-permeable cation channel is well established, its precise role in the plasma membrane, the endoplasmic reticulum and the cilium is controversial. Recent studies suggest that TRPP2 function is highly dependent on the subcellular compartment of expression, and is regulated by many interactions with adaptor proteins. This review summarizes the most pertinent evidence about the properties of TRPP2 channels, focusing on the compartment-specific functions of mammalian TRPP2.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Canais de Cátion TRPP/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/fisiologia , Canais de Cálcio/genética , Modelos Biológicos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
12.
J Physiol ; 569(Pt 3): 801-16, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16210352

RESUMO

The ion channel dynamics that underlie the complex firing patterns of cerebellar granule (CG) cells are still largely unknown. Here, we have characterized the subcellular localization and functional properties of Na+ channels that regulate the excitability of CG cells in culture. As evidenced by RT-PCR and immunocytochemical analysis, morphologically differentiated CG cells expressed Nav1.2 and Nav1.6, though both subunits appeared to be differentially regulated. Nav1.2 was localized at most axon initial segments (AIS) of CG cells from 8 days in vitro DIV 8 to DIV 15. At DIV 8, Nav1.6 was found uniformly throughout somata, dendrites and axons with occasional clustering in a subset of AIS. Accumulation of Nav1.6 at most AIS was evident by DIV 13-14, suggesting it is developmentally regulated at AIS. The specific contribution of these differentially distributed Na+ channels has been assessed using a combination of methods that allowed discrimination between functionally compartmentalized Na+ currents. In agreement with immunolocalization, we found that fast activating-fully inactivating Na+ currents predominate at the AIS membrane and in the somatic plasma membrane.


Assuntos
Cerebelo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Células Cultivadas , Cerebelo/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Ativação do Canal Iônico , Potenciais da Membrana/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.2 , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Sódio/metabolismo , Canais de Sódio/análise , Canais de Sódio/genética , Tetrodotoxina/farmacologia
13.
Mol Cell Neurosci ; 28(4): 715-26, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15797718

RESUMO

We previously observed that cadherin-11, a type II cadherin, is expressed in growing motor and sensory axons in the mouse embryo. Here, we assessed its functional involvement in the regulation of axon elongation and fasciculation by evaluating the activity of a specific cadherin-11 homophilic ligand, cad11-Fc (cadherin-11 extracellular region fused to Fc fragment of IgG), on the length and organization of motor axons outgrowing from embryonic ventral spinal cord explants. Cad11-Fc substrate enhanced axon growth and prevented interactions occurring between growing axons, providing evidences for a role of cadherin-11 in the control of growth cone progression. Comparison of cadherin-11 with N-cadherin, a type I cadherin concomitantly expressed by motor axons, revealed similarities in their functional properties, including the ability to reorganize the actin cytoskeleton through interactions with catenins, but differences in their axon growth-promoting activity, arguing for subtle differences in their contributions to peripheral nerve elongation.


Assuntos
Axônios/fisiologia , Caderinas/fisiologia , Crescimento Celular , Neurônios Motores/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Camundongos , Neurônios Motores/citologia , Gravidez
14.
Mol Cell Neurosci ; 27(2): 151-62, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15485771

RESUMO

Polysialic acid (PSA) on NCAM is an important modulator of cell-cell interactions during development and regeneration. Here we investigated whether PSA overexpression influences neural cell migration and myelination. We stably expressed a GFP-tagged polysialytransferase, PSTGFP, in mouse neurospheres and induced prolonged PSA synthesis. Using a chick xenograft assay for migration, we show that PSA can instruct precursor migration along the ventral pathway. PSA persistence did not change neural precursor multipotentiality in vitro but induced a delay in oligodendrocyte differentiation. PSTGFP+ precursors showed widespread engraftment in shiverer brain, closely similar to that observed with control precursors expressing a fluorescent protein. Initially, myelination by oligodendrocytes was delayed but, eventually, down-regulation of PSTGFP occurred, allowing myelination to proceed. Thus down-regulation of polysialyltransferases takes place even in cells where its RNA is under the control of a heterologous promoter and engineering PSA overexpression in neural precursors does not cause irreversible unphysiological effects.


Assuntos
Movimento Celular/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Molécula L1 de Adesão de Célula Nervosa/biossíntese , Neurônios/metabolismo , Ácidos Siálicos/biossíntese , Células-Tronco/metabolismo , Células 3T3 , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Mielinizadas/transplante , Molécula L1 de Adesão de Célula Nervosa/genética , Neurônios/transplante , Engenharia de Proteínas/métodos , Ácidos Siálicos/genética
15.
Biochem Biophys Res Commun ; 322(4): 1374-83, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15336986

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a major, inherited nephropathy affecting over 1:1000 of the worldwide population. It is a systemic condition with frequent hepatic and cardiovascular manifestations in addition to the progressive development of fluid-filled cysts from the tubules and collecting ducts of affected kidneys. The pathogenesis of cyst formation is currently thought to involve increased proliferation of epithelial cells, mild dedifferentiation, and fluid accumulation. In the past decade, study of ADPKD led to the discovery of a unique family of highly complex proteins, the polycystins. Loss-of-function mutations in either of two polycystin proteins, polycystin-1 or polycystin-2, give rise to ADPKD. These proteins are thought to function together as part of a multiprotein complex that may initiate Ca2+ signals, directing attention to the regulation of intracellular Ca2+ as a possible misstep that participates in cyst formation. Here we review what is known about the Ca2+ signaling functions of polycystin proteins and focus on findings that have significantly advanced our physiological insight. Special attention is paid to the recently discovered role of these proteins in the mechanotransduction of the renal primary cilium and the model it suggests.


Assuntos
Sinalização do Cálcio , Proteínas de Membrana/fisiologia , Proteínas/fisiologia , Canais de Cálcio/genética , Canais de Cálcio/fisiologia , Cílios/metabolismo , Humanos , Rim/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/química , Proteínas de Membrana/genética , Rim Policístico Autossômico Dominante/genética , Proteínas/química , Proteínas/genética , Canais de Cátion TRPP
16.
Mol Cell Neurosci ; 26(1): 123-34, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15121184

RESUMO

The NaV1.9 subunit is expressed in nociceptive dorsal root ganglion (DRG) neurons and sensory myenteric neurons in which it generates 'persistent' tetrodotoxin-resistant (TTX-R) Na+ currents of yet unknown physiological functions. Here, we have analyzed these currents in details by combining single-channel and whole-cell recordings from cultured rat DRG and myenteric neurons. Comparison of single-channel with whole-cell data indicates that recording using internal CsCl best reflects the basic electrical features of NaV1.9 currents. Inclusion of fluoride in the pipette solution caused a negative shift in the activation and inactivation gates of NaV1.9 but not NaV1.8. Fluoride acts by promoting entry of NaV1.9 channels into a preopen closed state, which causes a strong bias towards opening and enhances the ability of sensory neurons to sustain spiking. Thus, the modulation of the resting-closed states of NaV1.9 channels strongly influences nociceptor excitability and may provide a mechanism by which inflammatory mediators alter pain threshold.


Assuntos
Gânglios Autônomos/metabolismo , Gânglios Espinais/metabolismo , Ativação do Canal Iônico/fisiologia , Plexo Mientérico/metabolismo , Neurônios Aferentes/metabolismo , Neuropeptídeos/metabolismo , Canais de Sódio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Césio/farmacologia , Cloretos/farmacologia , Fluoretos/farmacologia , Gânglios Autônomos/citologia , Gânglios Autônomos/efeitos dos fármacos , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Plexo Mientérico/citologia , Plexo Mientérico/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.9 , Neurônios Aferentes/citologia , Neurônios Aferentes/efeitos dos fármacos , Neuropeptídeos/efeitos dos fármacos , Dor/metabolismo , Dor/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Ratos , Ratos Wistar , Canais de Sódio/efeitos dos fármacos
17.
Development ; 129(19): 4559-69, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12223412

RESUMO

In chick embryos, most if not all, replicating myoblasts present within the skeletal muscle masses express high levels of the FGF receptor FREK/FGFR4, suggesting an important role for this molecule during myogenesis. We examined FGFR4 function during myogenesis, and we demonstrate that inhibition of FGFR4, but not FGFR1 signaling, leads to a dramatic loss of limb muscles. All muscle markers analyzed (such as Myf5, MyoD and the embryonic myosin heavy chain) are affected. We show that inhibition of FGFR4 signal results in an arrest of muscle progenitor differentiation, which can be rapidly reverted by the addition of exogenous FGF, rather than a modification in their proliferative capacities. Conversely, over-expression of FGF8 in somites promotes FGFR4 expression and muscle differentiation in this tissue. Together, these results demonstrate that in vivo, myogenic differentiation is positively controlled by FGF signaling, a notion that contrasts with the general view that FGF promotes myoblast proliferation and represses myogenic differentiation. Our data assign a novel role to FGF8 during chick myogenesis and demonstrate that FGFR4 signaling is a crucial step in the cascade of molecular events leading to terminal muscle differentiation.


Assuntos
Proteínas de Ligação a DNA , Músculo Esquelético/citologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Transativadores , Animais , Biomarcadores , Diferenciação Celular , Divisão Celular , Embrião de Galinha , Extremidades , Expressão Gênica , Botões de Extremidades , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Fator Regulador Miogênico 5 , Cadeias Pesadas de Miosina/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células-Tronco/citologia , Proteínas de Xenopus , Xenopus laevis
18.
Mol Cell Neurosci ; 20(3): 458-75, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12139922

RESUMO

Cadherins constitute one of the major classes of adhesion receptors participating in the architectural organization of embryonic tissues. We previously identified type II cadherins 6 and 11, whose mRNA expression was tightly regulated during mouse neuromuscular development. Here we determine the regulation of expression and the localization of the corresponding proteins in relation to spinal neuron differentiation and peripheral nerve outgrowth. Cadherin-11 expression initially appeared in motor columns before extending to the whole spinal cord, dorsal root ganglia, and sensory-motor peripheral nerves. Then, its expression decreased in nervous tissues and became predominant in mesenchymes. Cadherin-6 was exclusively expressed in floor and roof plates, motor columns, and motor peripheral nerves, including motor axons and Schwann cell precursors. Compared to cadherin-11, its expression in motor columns was delayed and restricted to certain subpopulations of motoneurons. These results strongly implicate cadherins 6 and 11 in the control of spinal motoneuron differentiation and segregation and in axoaxonal, axoglial, and glio-glial interactions during sensory-motor nerve progression.


Assuntos
Caderinas/biossíntese , Neurônios Motores/metabolismo , Animais , Caderinas/imunologia , Caderinas/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Embrião de Mamíferos , Feminino , Soros Imunes/biossíntese , Soros Imunes/química , Immunoblotting , Camundongos , Gravidez , Medula Espinal/citologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...