Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Sci ; 333: 111731, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196901

RESUMO

In the current climate change scenario, water stress is a serious threat to limit crop growth and yields. It is necessary to develop tolerant plants that cope with water stress and, for this purpose, tolerance mechanisms should be studied. NIBER® is a proven water stress- and salt-tolerant pepper hybrid rootstock (Gisbert-Mullor et al., 2020; López-Serrano et al., 2020), but tolerance mechanisms remain unclear. In this experiment, NIBER® and A10 (a sensitive pepper accession (Penella et al., 2014)) response to short-term water stress at 5 h and 24 h was studied in terms of gene expression and metabolites content in roots. GO terms and gene expression analyses evidenced constitutive differences in the transcriptomic profile of NIBER® and A10, associated with detoxification systems of reactive oxygen species (ROS). Upon water stress, transcription factors like DREBs and MYC are upregulated and the levels of auxins, abscisic acid and jasmonic acid are increased in NIBER®. NIBER® tolerance mechanisms involve an increase in osmoprotectant sugars (i.e., trehalose, raffinose) and in antioxidants (spermidine), but lower contents of oxidized glutathione compared to A10, which indicates less oxidative damage. Moreover, the gene expression for aquaporins and chaperones is enhanced. These results show the main NIBER® strategies to overcome water stress.


Assuntos
Capsicum , Estresse Fisiológico , Estresse Fisiológico/genética , Transcriptoma , Desidratação , Perfilação da Expressão Gênica , Capsicum/genética
2.
Front Plant Sci ; 14: 1170021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180400

RESUMO

Phytohormones play an important role in regulating the plant behavior to drought. In previous studies, NIBER® pepper rootstock showed tolerance to drought in terms of production and fruit quality compared to ungrafted plants. In this study, our hypothesis was that short-term exposure to water stress in young, grafted pepper plants would shed light on tolerance to drought in terms of modulation of the hormonal balance. To validate this hypothesis, fresh weight, water use efficiency (WUE) and the main hormone classes were analyzed in self-grafted pepper plants (variety onto variety, V/V) and variety grafted onto NIBER® (V/N) at 4, 24, and 48h after severe water stress was induced by PEG addition. After 48h, WUE in V/N was higher than in V/V, due to major stomata closure to maintain water retention in the leaves. This can be explained by the higher abscisic acid (ABA) levels observed in the leaves of V/N plants. Despite the interaction between ABA and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in relation to stomata closure is controversial, we observed an important increase of ACC at the end of the experiment in V/N plants coinciding with an important rise of the WUE and ABA. The maximum concentration of jasmonic acid and salicylic acid after 48h was found in the leaves of V/N, associated with their role in abiotic stress signaling and tolerance. Respect to auxins and cytokinins, the highest concentrations were linked to water stress and NIBER®, but this effect did not occur for gibberellins. These results show that hormone balance was affected by water stress and rootstock genotype, where NIBER® rootstock displayed a better ability to overcome short-term water stress.

3.
Antioxidants (Basel) ; 10(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918024

RESUMO

Currently, limited water supply is a major problem in many parts of the world. Grafting peppers onto adequate rootstocks is a sustainable technique used to cope with water scarcity in plants. For 1 month, this work compared grafted peppers by employing two rootstocks (H92 and H90), with different sensitivities to water stress, and ungrafted plants in biomass, photosynthesis, and antioxidant response terms to identify physiological-antioxidant pathways of water stress tolerance. Water stress significantly stunted growth in all the plant types, although tolerant grafted plants (variety grafted onto H92, Var/H92) had higher leaf area and fresh weight values. Var/H92 showed photosynthesis and stomata conductance maintenance, compared to sensitive grafted plants (Var/H90) and ungrafted plants under water stress, linked with greater instantaneous water use efficiency. The antioxidant system was effective in removing reactive oxygen species (ROS) that could damage photosynthesis; a significant positive and negative linear correlation was observed between the rate of CO2 uptake and ascorbic acid (AsA)/total AsA (AsAt) and proline, respectively. Moreover, in Var/H92 under water stress, both higher proline and ascorbate concentration were observed. Consequently, less membrane lipid peroxidation was quantified in Var/H92.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...