Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4216, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452051

RESUMO

Malaria parasite lacks canonical pathways for amino acid biosynthesis and depends primarily on hemoglobin degradation and extracellular resources for amino acids. Interestingly, a putative gene for glutamine synthetase (GS) is retained despite glutamine being an abundant amino acid in human and mosquito hosts. Here we show Plasmodium GS has evolved as a unique type I enzyme with distinct structural and regulatory properties to adapt to the asexual niche. Methionine sulfoximine (MSO) and phosphinothricin (PPT) inhibit parasite GS activity. GS is localized to the parasite cytosol and abundantly expressed in all the life cycle stages. Parasite GS displays species-specific requirement in Plasmodium falciparum (Pf) having asparagine-rich proteome. Targeting PfGS affects asparagine levels and inhibits protein synthesis through eIF2α phosphorylation leading to parasite death. Exposure of artemisinin-resistant Pf parasites to MSO and PPT inhibits the emergence of viable parasites upon artemisinin treatment.


Assuntos
Artemisininas , Parasitos , Animais , Humanos , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Asparagina/genética , Aminoácidos , Glutamina/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Artemisininas/farmacologia , Parasitos/genética , Parasitos/metabolismo
2.
Microbiol Spectr ; : e0494322, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976018

RESUMO

The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and in vivo animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed in vivo characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. IMPORTANCE Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.

3.
Nat Commun ; 13(1): 4028, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821013

RESUMO

Heme-biosynthetic pathway of malaria parasite is dispensable for asexual stages, but essential for mosquito and liver stages. Despite having backup mechanisms to acquire hemoglobin-heme, pathway intermediates and/or enzymes from the host, asexual parasites express heme pathway enzymes and synthesize heme. Here we show heme synthesized in asexual stages promotes cerebral pathogenesis by enhancing hemozoin formation. Hemozoin is a parasite molecule associated with inflammation, aberrant host-immune responses, disease severity and cerebral pathogenesis. The heme pathway knockout parasites synthesize less hemozoin, and mice infected with knockout parasites are protected from cerebral malaria and death due to anemia is delayed. Biosynthetic heme regulates food vacuole integrity and the food vacuoles from knockout parasites are compromised in pH, lipid unsaturation and proteins, essential for hemozoin formation. Targeting parasite heme synthesis by griseofulvin-a FDA-approved antifungal drug, prevents cerebral malaria in mice and provides an adjunct therapeutic option for cerebral and severe malaria.


Assuntos
Malária Cerebral , Parasitos , Animais , Griseofulvina/farmacologia , Heme/metabolismo , Hemoglobinas , Malária Cerebral/tratamento farmacológico , Malária Cerebral/prevenção & controle , Camundongos , Parasitos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-34131556

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by a Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2), which is a positive-strand RNA virus. The SARS-CoV-2 genome and its association to SAR-CoV-1 vary from ca. 66 to 96% depending on the type of betacoronavirideae family members. With several drugs, viz. chloroquine, hydroxychloroquine, ivermectin, artemisinin, remdesivir, azithromycin considered for clinical trials, there has been an inherent need to find distinctive antiviral mechanisms of these drugs. Curcumin, a natural bioactive molecule has been shown to have therapeutic potential for various diseases, and its effect on COVID-19 is also currently being explored. In this study, we show the binding potential of curcumin targeted to a variety of SARS-CoV-2 proteins, viz. spike glycoproteins (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), spike protein-ACE2 (PDB ID: 6M17) along with nsp10 (PDB ID: 6W4H) and RNA dependent RNA polymerase (PDB ID: 6M71) structures. Furthermore, representative docking complexes were validated using molecular dynamics simulations and mechanistic studies at 100 ns was carried on nucleocapsid and nsp10 proteins with curcumin complexes which resulted in stable and efficient binding energies and correlated with that of docked binding energies of the complexes. Both the docking and simulation studies indicate that curcumin has the potential as an antiviral against COVID-19.

5.
J Mol Diagn ; 21(5): 824-838, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31158524

RESUMO

Developing ultrasensitive methods capable of detecting submicroscopic parasitemia-a challenge that persists in low transmission areas, asymptomatic carriers, and patients showing recrudescence-is vital to achieving malaria eradication. Nucleic acid amplification techniques offer improved analytical sensitivity but are limited by the number of copies of the amplification targets. Herein, we perform a novel genome mining approach to identify a pair of identical multirepeat sequences (IMRSs) that constitute 170 and 123 copies in the Plasmodium falciparum genome and explore their potential as primers for PCR. Real-time quantitative PCR analyses have shown the ability of P. falciparum IMRSs to amplify as low as 2.54 fg of P. falciparum genomic DNA (approximately 0.1 parasite), with a striking 100-fold increase in detection limit when compared with P. falciparum 18S rRNA (251.4 fg; approximately 10 parasites). Validation with clinical samples from malaria-endemic regions has shown 6.70 ± 1.66 cycle better detection threshold in terms of Ct value for P. falciparum IMRSs, with approximately 100% sensitivity and specificity. Plasmodium falciparum IMRS assays are also capable of detecting submicroscopic infections in asymptomatic samples. To summarize, this approach of initiating amplification at multiple loci across the genome and generating more products with increased analytical sensitivity is different from classic approaches amplifying multicopy genes or tandem repeats. This can serve as a platform technology to develop advanced diagnostics for various pathogens.


Assuntos
DNA de Protozoário/análise , Genoma de Protozoário , Malária Falciparum/diagnóstico , Parasitemia/diagnóstico , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sequências Repetitivas de Ácido Nucleico/genética , Biologia Computacional/métodos , DNA de Protozoário/sangue , DNA de Protozoário/genética , Mineração de Dados/métodos , Genes de Protozoários , Humanos , Malária Falciparum/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Parasitemia/parasitologia , Plasmodium falciparum/isolamento & purificação
6.
Sci Rep ; 7(1): 10062, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855623

RESUMO

Curcumin has many pharmacological activities despite its poor bioavailability and in vivo stability. Here, we show that a nanoformulated curcumin (PLGA-curcumin) has better therapeutic index than native curcumin in preventing the onset of neurological symptoms and delaying the death of mice in experimental cerebral malaria. Oral PLGA-curcumin was at least as effective as native curcumin at a 15-fold lower concentration in preventing the breakdown of blood-brain barrier and inhibition of brain mRNAs for inflammatory cytokines, chemokine receptor CXCR3 and its ligand CXCL10, with an increase in the anti-inflammatory cytokine IL-10. This was also reflected in serum cytokine and chemokine levels. At equivalent concentrations, a single oral dose of PLGA-curcumin was more effective in inhibiting serum IFNγ levels and enhancing IL-10 levels than native curcumin. Even at low concentrations, PLGA-curcumin was superior to native curcumin in inhibiting the sequestration of parasitized-RBCs and CD8+ T cells in the brain. A single oral dose of 5 mg PLGA-curcumin containing 350 µg of curcumin resulted in 3-4 fold higher concentration and prolonged presence of curcumin in the brain than that obtained with 5 mg of native curcumin, indicating better bioavailability of PLGA-curcumin. PLGA-curcumin has potential as an adjunct drug to treat human cerebral malaria.


Assuntos
Antimaláricos/farmacologia , Encéfalo/efeitos dos fármacos , Curcumina/farmacologia , Malária Cerebral/tratamento farmacológico , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Animais , Antimaláricos/química , Disponibilidade Biológica , Encéfalo/parasitologia , Encéfalo/patologia , Linfócitos T CD8-Positivos , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Curcumina/química , Modelos Animais de Doenças , Portadores de Fármacos , Composição de Medicamentos/métodos , Eritrócitos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Malária Cerebral/genética , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/metabolismo , Fármacos Neuroprotetores/química , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/patogenicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Transdução de Sinais
7.
Trends Parasitol ; 33(8): 583-586, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28495484

RESUMO

The malaria parasite has a functional heme-biosynthetic pathway, although it can access host hemoglobin-heme. The heme pathway is dispensable for blood stages, but essential in the mosquito stages which do not acquire hemoglobin-heme. We propose that the blood stage parasites maintain a dynamic heme pool through multiple back-up mechanisms.


Assuntos
Heme/biossíntese , Interações Hospedeiro-Patógeno , Plasmodium falciparum/metabolismo , Animais , Culicidae/parasitologia , Heme/genética , Heme/metabolismo , Humanos , Estágios do Ciclo de Vida/fisiologia , Plasmodium falciparum/genética
8.
ACS Med Chem Lett ; 8(3): 274, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28337314
9.
Trends Pharmacol Sci ; 37(1): 1-3, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26521094

RESUMO

Curcumin, by virtue of its ability to function as an immunomodulator, has the potential to serve as an adjunct drug to treat infectious diseases and provide long-term protection. The current need is to establish clinical trials with curcumin as an adjunct drug against specific infectious diseases.


Assuntos
Anti-Infecciosos/uso terapêutico , Curcumina/uso terapêutico , Fatores Imunológicos/uso terapêutico , Infecções/tratamento farmacológico , Adjuvantes Imunológicos , Animais , Ensaios Clínicos como Assunto , Humanos
10.
Nat Commun ; 6: 8775, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26531182

RESUMO

The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections.


Assuntos
Asparagina/metabolismo , Aspartato-Amônia Ligase/genética , Malária/prevenção & controle , Plasmodium berghei/genética , Animais , Anopheles , Asparaginase/farmacologia , Asparagina/farmacologia , Imunofluorescência , Técnicas de Inativação de Genes , Estágios do Ciclo de Vida/efeitos dos fármacos , Fígado/parasitologia , Malária/parasitologia , Malária/transmissão , Camundongos , Organismos Geneticamente Modificados , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Sci Rep ; 5: 12671, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26227888

RESUMO

Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15-20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8(+) T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM.


Assuntos
Encéfalo/parasitologia , Curcumina/uso terapêutico , Eritrócitos/parasitologia , Malária Cerebral/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Animais , Artemisininas/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Encefalite/tratamento farmacológico , Eritrócitos/efeitos dos fármacos , Malária Cerebral/parasitologia , Camundongos
12.
PLoS Pathog ; 9(8): e1003522, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935500

RESUMO

Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS), and the last enzyme, ferrochelatase (FC), in the heme-biosynthetic pathway of Plasmodium berghei (Pb). The wild-type and knockout (KO) parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14)C] aminolevulinic acid (ALA). We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Anopheles/parasitologia , Ferroquelatase/metabolismo , Heme/biossíntese , Fígado/parasitologia , Malária Falciparum/enzimologia , Plasmodium berghei/enzimologia , Plasmodium falciparum/enzimologia , 5-Aminolevulinato Sintetase/genética , Animais , Ferroquelatase/genética , Heme/genética , Hemeproteínas/biossíntese , Hemeproteínas/genética , Humanos , Fígado/patologia , Malária Falciparum/genética , Camundongos , Oocistos/enzimologia , Plasmodium berghei/genética , Plasmodium falciparum/genética , Esporozoítos/enzimologia
13.
PLoS One ; 7(1): e29442, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22276114

RESUMO

Earlier studies in this laboratory have shown the potential of artemisinin-curcumin combination therapy in experimental malaria. In a parasite recrudescence model in mice infected with Plasmodium berghei (ANKA), a single dose of alpha,beta-arteether (ART) with three oral doses of curcumin prevented recrudescence, providing almost 95% protection. The parasites were completely cleared in blood with ART-alone (AE) or ART+curcumin (AC) treatments in the short-term, although the clearance was faster in the latter case involving increased ROS generation. But, parasites in liver and spleen were not cleared in AE or AC treatments, perhaps, serving as a reservoir for recrudescence. Parasitemia in blood reached up to 60% in AE-treated mice during the recrudescence phase, leading to death of animals. A transient increase of up to 2-3% parasitemia was observed in AC-treatment, leading to protection and reversal of splenomegaly. A striking increase in spleen mRNA levels for TLR2, IL-10 and IgG-subclass antibodies but a decrease in those for INFγ and IL-12 was observed in AC-treatment. There was a striking increase in IL-10 and IgG subclass antibody levels but a decrease in INFγ levels in sera leading to protection against recrudescence. AC-treatment failed to protect against recrudescence in TLR2(-/-) and IL-10(-/-) animals. IL-10 injection to AE-treated wild type mice and AC-treated TLR2(-/-) mice was able to prolong survival. Blood from the recrudescence phase in AE-treatment, but not from AC-treatment, was able to reinfect and kill naïve animals. Sera from the recrudescence phase of AC-treated animals reacted with several parasite proteins compared to that from AE-treated animals. It is proposed that activation of TLR2-mediated innate immune response leading to enhanced IL-10 production and generation of anti-parasite antibodies contribute to protective immunity in AC-treated mice. These results indicate a potential for curcumin-based combination therapy to be tested for prevention of recrudescence in falciparum and relapse in vivax malaria.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Curcumina/uso terapêutico , Imunomodulação/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/imunologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Animais , Quimioterapia Combinada , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Malária/metabolismo , Camundongos , Camundongos Mutantes , Baço/efeitos dos fármacos , Baço/metabolismo , Receptor 2 Toll-Like/metabolismo
15.
Mol Biochem Parasitol ; 174(1): 44-52, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20603160

RESUMO

Earlier studies in this laboratory had shown that the malarial parasite can synthesize heme de novo and inhibition of the pathway leads to death of the parasite. It has been proposed that the pathway for the biosynthesis of heme in Plasmodium falciparum is unique involving three different cellular compartments, namely mitochondrion, apicoplast and cytosol. Experimental evidences are now available for the functionality and localization of all the enzymes of this pathway, except protoporphyrinogen IX oxidase (PfPPO), the penultimate enzyme. In the present study, PfPPO has been cloned, expressed and shown to be localized to the mitochondrion by immunofluorescence microscopy. Interestingly, the enzyme has been found to be active only under anaerobic conditions and is dependent on electron transport chain (ETC) acceptors for its activity. The native enzyme present in the parasite is inhibited by the ETC inhibitors, atovaquone and antimycin. Atovaquone, a well known inhibitor of parasite dihydroorotate dehydrogenase, dependent on the ETC, inhibits synthesis of heme as well in P. falciparum culture. A model is proposed to explain the ETC dependence of both the pyrimidine and heme-biosynthetic pathways in P. falciparum.


Assuntos
Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Plasmodium falciparum/enzimologia , Protoporfirinogênio Oxidase/metabolismo , Proteínas de Protozoários/metabolismo , Anaerobiose , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Antiprotozoários/farmacologia , Atovaquona/farmacologia , Clonagem Molecular , Transporte de Elétrons/efeitos dos fármacos , Expressão Gênica , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Plasmodium falciparum/metabolismo , Protoporfirinogênio Oxidase/antagonistas & inibidores , Protoporfirinogênio Oxidase/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética
16.
Parasitol Int ; 59(2): 121-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20006984

RESUMO

A unique hybrid pathway has been proposed for de novo heme biosynthesis in Plasmodium falciparum involving three different compartments of the parasite, namely mitochondrion, apicoplast and cytosol. While parasite mitochondrion and apicoplast have been shown to harbor key enzymes of the pathway, there has been no experimental evidence for the involvement of parasite cytosol in heme biosynthesis. In this study, a recombinant P. falciparum coproporphyrinogen III oxidase (rPfCPO) was produced in E. coli and confirmed to be active under aerobic conditions. rPfCPO behaved as a monomer of 61kDa molecular mass in gel filtration analysis. Immunofluorescence studies using antibodies to rPfCPO suggested that the enzyme was present in the parasite cytosol. These results were confirmed by detection of enzyme activity only in the parasite soluble fraction. Western blot analysis with anti-rPfCPO antibodies also revealed a 58kDa protein only in this fraction and not in the membrane fraction. The cytosolic presence of PfCPO provides evidence for a hybrid heme-biosynthetic pathway in the malarial parasite.


Assuntos
Coproporfirinogênio Oxidase , Citosol/enzimologia , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Clonagem Molecular , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/genética , Coproporfirinogênio Oxidase/isolamento & purificação , Coproporfirinogênio Oxidase/metabolismo , Citosol/metabolismo , Eritrócitos/parasitologia , Heme/biossíntese , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
17.
Mol Biochem Parasitol ; 168(1): 109-12, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19523497

RESUMO

In the malarial parasite, enzymes of heme-biosynthetic pathway are distributed in different cellular compartments. The site of localization of ferrochelatase in the malarial parasite is crucial, since it will decide the ultimate site of heme synthesis. Earlier results have differed in terms of localization, being the mitochondrion or apicoplast and the functional enzyme has not been cloned, expressed and characterized. The present study reveals that Plasmodium falciparum ferrochelatase (PfFC) gene encodes multiple transcripts of which the one encoding the full length functional protein (PfFC) has been cloned and the recombinant protein over-expressed and purified from E. coli cells. The enzyme shows maximum activity with iron, while zinc is a poor substrate. Immunofluorescence studies with antibodies to functional ferrochelatase reveal that the native enzyme is localized to the mitochondrion of the parasite indicating that this organelle is the ultimate site of heme synthesis.


Assuntos
Ferroquelatase/metabolismo , Mitocôndrias/química , Mitocôndrias/enzimologia , Plasmodium falciparum/enzimologia , Animais , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Ferro/metabolismo , Microscopia de Fluorescência , Especificidade por Substrato , Zinco/metabolismo
18.
Int J Parasitol ; 39(5): 559-68, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19041871

RESUMO

Uroporphyrinogen decarboxylase (UROD) is a key enzyme in the heme-biosynthetic pathway and in Plasmodium falciparum it occupies a strategic position in the proposed hybrid pathway for heme biosynthesis involving shuttling of intermediates between different subcellular compartments in the parasite. In the present study, we demonstrate that an N-terminally truncated recombinant P. falciparum UROD (r(Delta)PfUROD) over-expressed and purified from Escherichia coli cells, as well as the native enzyme from the parasite were catalytically less efficient compared with the host enzyme, although they were similar in other enzyme parameters. Molecular modeling of PfUROD based on the known crystal structure of the human enzyme indicated that the protein manifests a distorted triose phosphate isomerase (TIM) barrel fold which is conserved in all the known structures of UROD. The parasite enzyme shares all the conserved or invariant amino acid residues at the active and substrate binding sites, but is rich in lysine residues compared with the host enzyme. Mutation of specific lysine residues corresponding to residues at the dimer interface in human UROD enhanced the catalytic efficiency of the enzyme and dimer stability indicating that the lysine rich nature and weak dimer interface of the wild-type PfUROD could be responsible for its low catalytic efficiency. PfUROD was localised to the apicoplast, indicating the requirement of additional mechanisms for transport of the product coproporphyrinogen to other subcellular sites for its further conversion and ultimate heme formation.


Assuntos
Heme/biossíntese , Plasmodium falciparum/enzimologia , Uroporfirinogênio Descarboxilase/fisiologia , Sequência de Aminoácidos , Animais , Catálise , Microscopia de Fluorescência , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/genética , Análise de Sequência de Proteína , Transdução de Sinais/genética , Especificidade da Espécie , Uroporfirinogênio Descarboxilase/genética
19.
J Biol Chem ; 283(1): 437-444, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17962188

RESUMO

The hybrid pathway for heme biosynthesis in the malarial parasite proposes the involvement of parasite genome-coded enzymes of the pathway localized in different compartments such as apicoplast, mitochondria, and cytosol. However, knowledge on the functionality and localization of many of these enzymes is not available. In this study, we demonstrate that porphobilinogen deaminase encoded by the Plasmodium falciparum genome (PfPBGD) has several unique biochemical properties. Studies carried out with PfPBGD partially purified from parasite membrane fraction, as well as recombinant PfPBGD lacking N-terminal 64 amino acids expressed and purified from Escherichia coli cells (DeltaPfPBGD), indicate that both the proteins are catalytically active. Surprisingly, PfPBGD catalyzes the conversion of porphobilinogen to uroporphyrinogen III (UROGEN III), indicating that it also possesses uroporphyrinogen III synthase (UROS) activity, catalyzing the next step. This obviates the necessity to have a separate gene for UROS that has not been so far annotated in the parasite genome. Interestingly, DeltaPfP-BGD gives rise to UROGEN III even after heat treatment, although UROS from other sources is known to be heat-sensitive. Based on the analysis of active site residues, a DeltaPfPBGDL116K mutant enzyme was created and the specific activity of this recombinant mutant enzyme is 5-fold higher than DeltaPfPBGD. More interestingly, DeltaPfPBGDL116K catalyzes the formation of uroporphyrinogen I (UROGEN I) in addition to UROGEN III, indicating that with increased PBGD activity the UROS activity of PBGD may perhaps become rate-limiting, thus leading to non-enzymatic cyclization of preuroporphyrinogen to UROGEN I. PfPBGD is localized to the apicoplast and is catalytically very inefficient compared with the host red cell enzyme.


Assuntos
Hidroximetilbilano Sintase/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Imunofluorescência , Hidroximetilbilano Sintase/química , Hidroximetilbilano Sintase/genética , Cinética , Dados de Sequência Molecular , Mutação , Porfirinas/química , Porfirinas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
20.
Trends Biochem Sci ; 32(10): 443-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17928230

RESUMO

The malarial parasite imports an infected host's red blood cell enzymes for heme biosynthesis during the intraerythrocytic stage. This is despite all the genes of the heme-biosynthetic pathway having been identified on the parasite genome. On the basis of predictions of parasite genome-coded enzyme localization, functionality of some of these enzymes and shuttling of intermediates between different parasite compartments, a hybrid model for parasite heme biosynthesis has been proposed. However, this model does not take into account the possible role of imported host enzymes in parasite heme biosynthesis. We propose an alternative model with an extrinsic heme-biosynthetic pathway in the parasite cytosol that uses imported host enzymes, and an intrinsic pathway confined to the organellar fractions that uses the parasite-genome-encoded enzymes.


Assuntos
Heme/biossíntese , Malária/enzimologia , Malária/parasitologia , Animais , Genoma Viral , Humanos , Malária/genética , Modelos Biológicos , Organelas/metabolismo , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...