Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 652(Pt A): 240-249, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595441

RESUMO

1D-molybdenum disulfide (MoS2) nanoscrolls displayed enhanced electrochemical properties compared to 2D-MoS2 nanosheet counterparts. Rolling of nanosheets is the main fabrication route to nanoscrolls. However, owing to the conflict between chemical stability and multiple bending, the morphology transition from nanosheets to nanoscrolls is quite challenging. Herein we describe a reversible morphology transition from nanosheets to nanoscrolls by utilizing non-covalent interactions between MoS2 nanosheets and phenothiazine based organic dye. Interestingly, nanoscrolls can easily be opened back into nanosheets by destroying the non-covalent interactions with organic solvents. The prepared nanoscrolls exhibited enhanced electrochemical properties than nanosheets. Compared to nanosheets, nanoscrolls exhibited comparatively lower overpotential with a Tafel slope of 141 mV dec-1 and high specific capacitance of 1868 F g-1. Hydrogen evolution by the Volmer-Heyrovsky mechanism being superior for the nanoscrolls is envisaged by the relatively increased availability of Hads sites at MoS2 edges induced by scrolling. Whereas the high specific capacitance value of nanoscrolls is ascribed to the enhanced electrical double-layer capacitance mediated charge storage, which arises due to the synergistic effect of both scrolled structure and the electron-rich phenothiazine-based dye.

2.
Cancer Discov ; 12(3): 670-691, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34642171

RESUMO

Gastric cancer heterogeneity represents a barrier to disease management. We generated a comprehensive single-cell atlas of gastric cancer (>200,000 cells) comprising 48 samples from 31 patients across clinical stages and histologic subtypes. We identified 34 distinct cell-lineage states including novel rare cell populations. Many lineage states exhibited distinct cancer-associated expression profiles, individually contributing to a combined tumor-wide molecular collage. We observed increased plasma cell proportions in diffuse-type tumors associated with epithelial-resident KLF2 and stage-wise accrual of cancer-associated fibroblast subpopulations marked by high INHBA and FAP coexpression. Single-cell comparisons between patient-derived organoids (PDO) and primary tumors highlighted inter- and intralineage similarities and differences, demarcating molecular boundaries of PDOs as experimental models. We complemented these findings by spatial transcriptomics, orthogonal validation in independent bulk RNA-sequencing cohorts, and functional demonstration using in vitro and in vivo models. Our results provide a high-resolution molecular resource of intra- and interpatient lineage states across distinct gastric cancer subtypes. SIGNIFICANCE: We profiled gastric malignancies at single-cell resolution and identified increased plasma cell proportions as a novel feature of diffuse-type tumors. We also uncovered distinct cancer-associated fibroblast subtypes with INHBA-FAP-high cell populations as predictors of poor clinical prognosis. Our findings highlight potential origins of deregulated cell states in the gastric tumor ecosystem. This article is highlighted in the In This Issue feature, p. 587.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Gástricas , Fibroblastos Associados a Câncer/patologia , Ecossistema , Humanos , Análise de Célula Única , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transcriptoma , Microambiente Tumoral/genética
3.
Genome Med ; 13(1): 158, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635154

RESUMO

BACKGROUND: Enhancers are distal cis-regulatory elements required for cell-specific gene expression and cell fate determination. In cancer, enhancer variation has been proposed as a major cause of inter-patient heterogeneity-however, most predicted enhancer regions remain to be functionally tested. METHODS: We analyzed 132 epigenomic histone modification profiles of 18 primary gastric cancer (GC) samples, 18 normal gastric tissues, and 28 GC cell lines using Nano-ChIP-seq technology. We applied Capture-based Self-Transcribing Active Regulatory Region sequencing (CapSTARR-seq) to assess functional enhancer activity. An Activity-by-contact (ABC) model was employed to explore the effects of histone acetylation and CapSTARR-seq levels on enhancer-promoter interactions. RESULTS: We report a comprehensive catalog of 75,730 recurrent predicted enhancers, the majority of which are GC-associated in vivo (> 50,000) and associated with lower somatic mutation rates inferred by whole-genome sequencing. Applying CapSTARR-seq to the enhancer catalog, we observed significant correlations between CapSTARR-seq functional activity and H3K27ac/H3K4me1 levels. Super-enhancer regions exhibited increased CapSTARR-seq signals compared to regular enhancers, even when decoupled from native chromatin contexture. We show that combining histone modification and CapSTARR-seq functional enhancer data improves the prediction of enhancer-promoter interactions and pinpointing of germline single nucleotide polymorphisms (SNPs), somatic copy number alterations (SCNAs), and trans-acting TFs involved in GC expression. We identified cancer-relevant genes (ING1, ARL4C) whose expression between patients is influenced by enhancer differences in genomic copy number and germline SNPs, and HNF4α as a master trans-acting factor associated with GC enhancer heterogeneity. CONCLUSIONS: Our results indicate that combining histone modification and functional assay data may provide a more accurate metric to assess enhancer activity than either platform individually, providing insights into the relative contribution of genetic (cis) and regulatory (trans) mechanisms to GC enhancer functional heterogeneity.


Assuntos
Elementos Facilitadores Genéticos , Epigenômica , Neoplasias Gástricas/genética , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Acetilação , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Regulação Neoplásica da Expressão Gênica , Genômica , Histonas/metabolismo , Humanos , Proteína 1 Inibidora do Crescimento/genética , Proteína 1 Inibidora do Crescimento/metabolismo , Oncogenes , Regiões Promotoras Genéticas , RNA-Seq , Transcriptoma , Sequenciamento Completo do Genoma
4.
Genome Biol ; 22(1): 167, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074348

RESUMO

BACKGROUND: CIMP (CpG island methylator phenotype) is an epigenetic molecular subtype, observed in multiple malignancies and associated with the epigenetic silencing of tumor suppressors. Currently, for most cancers including gastric cancer (GC), mechanisms underlying CIMP remain poorly understood. We sought to discover molecular contributors to CIMP in GC, by performing global DNA methylation, gene expression, and proteomics profiling across 14 gastric cell lines, followed by similar integrative analysis in 50 GC cell lines and 467 primary GCs. RESULTS: We identify the cystathionine beta-synthase enzyme (CBS) as a highly recurrent target of epigenetic silencing in CIMP GC. Likewise, we show that CBS epimutations are significantly associated with CIMP in various other cancers, occurring even in premalignant gastroesophageal conditions and longitudinally linked to clinical persistence. Of note, CRISPR deletion of CBS in normal gastric epithelial cells induces widespread DNA methylation changes that overlap with primary GC CIMP patterns. Reflecting its metabolic role as a gatekeeper interlinking the methionine and homocysteine cycles, CBS loss in vitro also causes reductions in the anti-inflammatory gasotransmitter hydrogen sulfide (H2S), with concomitant increase in NF-κB activity. In a murine genetic model of CBS deficiency, preliminary data indicate upregulated immune-mediated transcriptional signatures in the stomach. CONCLUSIONS: Our results implicate CBS as a bi-faceted modifier of aberrant DNA methylation and inflammation in GC and highlights H2S donors as a potential new therapy for CBS-silenced lesions.


Assuntos
Ilhas de CpG/genética , Cistationina beta-Sintase/genética , Metilação de DNA/genética , Inflamação/genética , Mutação/genética , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Deleção de Genes , Humanos , Intestinos/patologia , Metaplasia , Camundongos Transgênicos , Fenótipo , Proteoma/metabolismo , Transcriptoma/genética
6.
Chemosphere ; 271: 129506, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33445017

RESUMO

Nanostructured photocatalysts have always offered opportunities to solve issues concerned with the environmental challenges caused by rapid urbanization and industrialization. These materials, due to their tunable physicochemical characteristics, are capable of providing a clean and sustainable ecosystem to humanity. One of the current thriving research focuses of visible-light-driven photocatalysts is on the nanocomposites of titanium dioxide (TiO2) with carbon nanostructures, especially graphene. Coupling TiO2 with graphene has proven more active by photocatalysis than TiO2 alone. It is generally considered that graphene sheets act as an electron acceptor facilitating the transfer and separation of photogenerated electrons during TiO2 excitation, thereby reducing electron-hole recombination. This study briefly reviews the fundamental mechanism and interfacial charge-transfer dynamics in TiO2/graphene nanocomposites. Design strategies of various graphene-based hybrids are highlighted along with some specialized synthetic routes adopted to attain preferred properties. Importantly, the enhancing interfacial charge transfer of photogenerated e¯CB through the graphene layers by morphology orientation of TiO2, predominated exposure of their high energy crystal facets, defect engineering, enhancing catalytic sites in graphene, constructing dedicated architectures, tuning the nanomaterial dimensionality at the interface, and employing the synergism adopted through various modifications, are systematically compiled. Portraying the significance of these photocatalytic hybrids in environmental remediation, important applications including air and water purification, self-cleaning surfaces, H2 production, and CO2 reduction to desired fuels, are addressed.


Assuntos
Grafite , Catálise , Ecossistema , Titânio
7.
Genome Biol ; 22(1): 44, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482911

RESUMO

BACKGROUND: Deregulated gene expression is a hallmark of cancer; however, most studies to date have analyzed short-read RNA sequencing data with inherent limitations. Here, we combine PacBio long-read isoform sequencing (Iso-Seq) and Illumina paired-end short-read RNA sequencing to comprehensively survey the transcriptome of gastric cancer (GC), a leading cause of global cancer mortality. RESULTS: We performed full-length transcriptome analysis across 10 GC cell lines covering four major GC molecular subtypes (chromosomal unstable, Epstein-Barr positive, genome stable and microsatellite unstable). We identify 60,239 non-redundant full-length transcripts, of which > 66% are novel compared to current transcriptome databases. Novel isoforms are more likely to be cell line and subtype specific, expressed at lower levels with larger number of exons, with longer isoform/coding sequence lengths. Most novel isoforms utilize an alternate first exon, and compared to other alternative splicing categories, are expressed at higher levels and exhibit higher variability. Collectively, we observe alternate promoter usage in 25% of detected genes, with the majority (84.2%) of known/novel promoter pairs exhibiting potential changes in their coding sequences. Mapping these alternate promoters to TCGA GC samples, we identify several cancer-associated isoforms, including novel variants of oncogenes. Tumor-specific transcript isoforms tend to alter protein coding sequences to a larger extent than other isoforms. Analysis of outcome data suggests that novel isoforms may impart additional prognostic information. CONCLUSIONS: Our results provide a rich resource of full-length transcriptome data for deeper studies of GC and other gastrointestinal malignancies.


Assuntos
Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal , Processamento Alternativo , Linhagem Celular Tumoral , Éxons , Perfilação da Expressão Gênica , Genoma , Humanos , Fases de Leitura Aberta , Isoformas de Proteínas , Análise de Sequência de RNA
8.
J Clin Invest ; 130(6): 3005-3020, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364535

RESUMO

Transcriptional reactivation of telomerase catalytic subunit (TERT) is a frequent hallmark of cancer, occurring in 90% of human malignancies. However, specific mechanisms driving TERT reactivation remain obscure for many tumor types and in particular gastric cancer (GC), a leading cause of global cancer mortality. Here, through comprehensive genomic and epigenomic analysis of primary GCs and GC cell lines, we identified the transcription factor early B cell factor 1 (EBF1) as a TERT transcriptional repressor and inactivation of EBF1 function as a major cause of TERT upregulation. Abolishment of EBF1 function occurs through 3 distinct (epi)genomic mechanisms. First, EBF1 is epigenetically silenced via DNA methyltransferase, polycomb-repressive complex 2 (PRC2), and histone deacetylase activity in GCs. Second, recurrent, somatic, and heterozygous EBF1 DNA-binding domain mutations result in the production of dominant-negative EBF1 isoforms. Third, more rarely, genomic deletions and rearrangements proximal to the TERT promoter remobilize or abolish EBF1-binding sites, derepressing TERT and leading to high TERT expression. EBF1 is also functionally required for various malignant phenotypes in vitro and in vivo, highlighting its importance for GC development. These results indicate that multimodal genomic and epigenomic alterations underpin TERT reactivation in GC, converging on transcriptional repressors such as EBF1.


Assuntos
Epigenômica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/metabolismo , Telomerase/biossíntese , Transativadores/metabolismo , Linhagem Celular Tumoral , Humanos , Mutação , Proteínas de Neoplasias/genética , Elementos de Resposta , Neoplasias Gástricas/genética , Telomerase/genética , Transativadores/genética
9.
Mol Genet Metab Rep ; 23: 100580, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32257815

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with dietary folate deficiency and mutations in genes required for one­carbon metabolism. However, the mechanism through which this occurs is unclear. To improve our understanding of this link, we investigated liver morphology, metabolism and fuel storage in adult mice with a hypomorphic mutation in the gene methionine synthase reductase (Mtrr gt ). MTRR enzyme is a key regulator of the methionine and folate cycles. The Mtrr gt mutation in mice was previously shown to disrupt one­carbon metabolism and cause a wide-spectrum of developmental phenotypes and late adult-onset macrocytic anaemia. Here, we showed that livers of Mtrr gt/gt female mice were enlarged compared to control C57Bl/6J livers. Histological analysis of these livers revealed eosinophilic hepatocytes with decreased glycogen content, which was associated with down-regulation of genes involved in glycogen synthesis (e.g., Ugp2 and Gsk3a genes). While female Mtrr gt/gt livers showed evidence of reduced ß-oxidation of fatty acids, there were no other associated changes in the lipidome in female or male Mtrr gt/gt livers compared with controls. Defects in glycogen storage and lipid metabolism often associate with disruption of mitochondrial electron transfer system activity. However, defects in mitochondrial function were not detected in Mtrr gt/gt livers as determined by high-resolution respirometry analysis. Overall, we demonstrated that adult Mtrr gt/gt female mice showed abnormal liver morphology that differed from the NAFLD phenotype and that was accompanied by subtle changes in their hepatic metabolism and fuel storage.

10.
Eur J Cancer ; 123: 48-57, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31655359

RESUMO

BACKGROUND: DNA methylation signatures describing distinct histological subtypes of oesophageal cancer have been reported. We studied DNA methylation in samples from the MRC OE02 phase III trial, which randomised patients with resectable oesophageal cancer to surgery alone (S) or neoadjuvant chemotherapy followed by surgery (CS). AIM: The aim of the study was to identify epigenetic signatures predictive of chemotherapy benefit in patients with oesophageal adenocarcinoma (OAC) from the OE02 trial and validate the findings in an independent cohort. METHODS: DNA methylation was analysed using the Illumina GoldenGate platform on surgically resected OAC specimens from patients in the OE02 trial. Cox proportional hazard analysis was performed to select probes predictive of survival in the CS arm. Non-negative matrix factorisation was used to perform clustering and delineate DNA methylation signatures. The findings were validated in an independent cohort of patients with gastroesophageal adenocarcinoma treated with neoadjuvant chemotherapy. RESULTS: A total of 229 patients with OAC were analysed from the OE02 trial (118 in the CS arm and 111 in the S arm). There was no difference in DNA methylation status between the CS and S arms. A metagene signature was created by dichotomising samples into two clusters. In cluster 1, patients in the CS arm had significant overall survival (OS) benefit (median OS CS: 931 days vs. S: 536 days [HR: 1.54, P = 0.031]). In cluster 2, patients in the CS arm had similar (or worse) OS compared with patients in the S arm (CS: 348 days vs. S: 472 days [HR: 0.70, P = 0.1], and test of interaction was significant (p = 0.005). In the validation cohort (n = 13), there was no difference in DNA methylation status in paired pre- and post-treatment samples. When the epigenetic signature was applied, cluster 1 samples had better OS (median OS, cluster 1: 1174 days vs. cluster 2: 392 days, HR: 3.47, p = 0.059) CONCLUSIONS: This is the first and largest study of DNA methylation in patients with OAC uniformly treated in a randomised phase III trial. We identified an epigenetic signature that may serve as a predictive biomarker for chemotherapy benefit in OAC.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Metilação de DNA , Epigênese Genética , Neoplasias Esofágicas/tratamento farmacológico , Terapia Neoadjuvante , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cisplatino/administração & dosagem , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Feminino , Fluoruracila/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Ensaios Clínicos Controlados Aleatórios como Assunto , Taxa de Sobrevida
11.
Sci Rep ; 8(1): 12248, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115935

RESUMO

Exportin-1 (XPO1) controls the nucleo-cytoplasmic trafficking of several key growth regulatory and tumor suppressor proteins. Nuclear export blockade through XPO1 inhibition is a target for therapeutic inhibition in many cancers. Studies have suggested XPO1 upregulation as an indicator of poor prognosis in gastric cancer. In the current study, we investigated the anti-tumor efficacy of selective inhibitors of nuclear export (SINE) compounds KPT-185, KTP-276 and clinical stage selinexor (KPT-330) in gastric cancer. XPO1 was found to be overexpressed in gastric cancer as compared to adjacent normal tissues and was correlated with poor survival outcomes. Among the 3 SINE compounds, in vitro targeting of XPO1 with selinexor resulted in greatest potency with significant anti-proliferative effects at nano molar concentrations. XPO1 inhibition by selinexor resulted in nuclear accumulation of p53, causing cell cycle arrest and apoptosis. Also, inhibition of XPO1 lead to the cytoplasmic retention of p21 and suppression of survivin. Orally administered selienxor caused significant inhibition of tumor growth in xenograft models of gastric cancer. Furthermore, combination of selinexor with irinotecan exhibited greater anti-tumor effect compared to individual treatment. Taken together, our study underscores the therapeutic utility of XPO1 targeting in gastric cancer and suggests the potential benefits of XPO1 inhibition in-combination with chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Hidrazinas/farmacologia , Neoplasias Gástricas/patologia , Triazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Adulto , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Physiol ; 596(18): 4341-4360, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30024025

RESUMO

KEY POINTS: Folate (folic acid) deficiency and mutations in folate-related genes in humans result in megaloblastic anaemia. Folate metabolism, which requires the enzyme methionine synthase reductase (MTRR), is necessary for DNA synthesis and the transmission of one-carbon methyl groups for cellular methylation. In this study, we show that the hypomorphic Mtrrgt/gt mutation in mice results in late-onset and sex-specific blood defects, including macrocytic anaemia, extramedullary haematopoiesis and lymphopenia. Notably, when either parent carries an Mtrrgt allele, blood phenotypes result in their genetically wildtype adult daughters, the effects of which are parent specific. Our data establish a new model for studying the mechanism of folate metabolism in macrocytic anaemia aetiology and suggest that assessing parental folate status might be important when diagnosing adult patients with unexplained anaemia. ABSTRACT: The importance of the vitamin folate (also known as folic acid) in erythrocyte formation, maturation and/or longevity is apparent since folate deficiency in humans causes megaloblastic anaemia. Megaloblastic anaemia is a type of macrocytic anaemia whereby erythrocytes are enlarged and fewer in number. Folate metabolism is required for thymidine synthesis and one-carbon metabolism, though its specific role in erythropoiesis is not well understood. Methionine synthase reductase (MTRR) is a key enzyme necessary for the progression of folate metabolism since knocking down the Mtrr gene in mice results in hyperhomocysteinaemia and global DNA hypomethylation. We demonstrate here that abnormal folate metabolism in mice caused by Mtrrgt/gt homozygosity leads to haematopoietic phenotypes that are sex and age dependent. Specifically, Mtrrgt/gt female mice displayed macrocytic anaemia, which might be due to defective erythroid differentiation at the exclusion of haemolysis. This was associated with increased renal Epo mRNA expression, hypercellular bone marrow, and splenic extramedullary haematopoiesis. In contrast, the male response differed since Mtrrgt/gt male mice were not anaemic but did display erythrocytic macrocytosis and lymphopenia. Regardless of sex, these phenotypes were late onset. Remarkably, we also show that when either parent carries an Mtrrgt allele, a haematological defect results in their adult wildtype daughters. However, the specific phenotype was dependent upon the sex of the parent. For instance, wildtype daughters of Mtrr+/gt females displayed normocytic anaemia. In contrast, wildtype daughters of Mtrr+/gt males exhibited erythrocytic microcytosis not associated with anaemia. Therefore, abnormal folate metabolism affects adult haematopoiesis in an age-, sex- and parent-specific manner.


Assuntos
Anemia Megaloblástica/genética , Ferredoxina-NADP Redutase/genética , Deficiência de Ácido Fólico/genética , Hematopoese , Fatores Etários , Anemia Megaloblástica/sangue , Animais , Células Cultivadas , Feminino , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/sangue , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
13.
Placenta ; 59: 46-56, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29108636

RESUMO

INTRODUCTION: Throughout pregnancy, the placenta dynamically changes as trophoblast progenitors differentiate into mature trophoblast cell subtypes. This process is in part controlled by epigenetic regulation of DNA methylation leading to the inactivation of 'progenitor cell' genes and the activation of 'differentiation' genes. TET methylcytosine dioxygenases convert 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) during DNA demethylation events. Here, we determine the spatiotemporal expression of TET1, TET2, and TET3 in specific trophoblast cell populations of mouse and human placentas throughout gestation, and consider their role in trophoblast cell differentiation and function. METHODS: In situ hybridization analysis was conducted to localize Tet1, Tet2, and Tet3 mRNA at key stages of mouse placental development. The distribution of 5-mC and 5-hmC in these samples was also evaluated. In comparison, expression patterns of TET1, TET2, and TET3 protein in human placentas were determined in first trimester and term pregnancies. RESULTS: In mouse, Tet1-3 mRNA was widely expressed in trophoblast cell populations from embryonic (E) day 8.5 to E12.5 including in progenitor and differentiated cells. However, expression became restricted to specific trophoblast giant cell subtypes by late gestation (E14.5 to E18.5). This coincided with cellular changes in 5-mC and 5-hmC levels. In human, cell columns, extravillous trophoblast and syncytiotrophoblast expressed TET1-3 whereas only TET3 was expressed in villus cytotrophoblast cells in first trimester and term placentas. DISCUSSION: Altogether, our data suggest that TET enzymes may play a dynamic role in the regulation of transcriptional activity of trophoblast progenitors and differentiated cell subtypes in mouse and human placentas.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Oxigenases de Função Mista/metabolismo , Placenta/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Feminino , Humanos , Camundongos , Gravidez
14.
Cancer Discov ; 7(10): 1116-1135, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28667006

RESUMO

Cholangiocarcinoma (CCA) is a hepatobiliary malignancy exhibiting high incidence in countries with endemic liver-fluke infection. We analyzed 489 CCAs from 10 countries, combining whole-genome (71 cases), targeted/exome, copy-number, gene expression, and DNA methylation information. Integrative clustering defined 4 CCA clusters-fluke-positive CCAs (clusters 1/2) are enriched in ERBB2 amplifications and TP53 mutations; conversely, fluke-negative CCAs (clusters 3/4) exhibit high copy-number alterations and PD-1/PD-L2 expression, or epigenetic mutations (IDH1/2, BAP1) and FGFR/PRKA-related gene rearrangements. Whole-genome analysis highlighted FGFR2 3' untranslated region deletion as a mechanism of FGFR2 upregulation. Integration of noncoding promoter mutations with protein-DNA binding profiles demonstrates pervasive modulation of H3K27me3-associated sites in CCA. Clusters 1 and 4 exhibit distinct DNA hypermethylation patterns targeting either CpG islands or shores-mutation signature and subclonality analysis suggests that these reflect different mutational pathways. Our results exemplify how genetics, epigenetics, and environmental carcinogens can interplay across different geographies to generate distinct molecular subtypes of cancer.Significance: Integrated whole-genome and epigenomic analysis of CCA on an international scale identifies new CCA driver genes, noncoding promoter mutations, and structural variants. CCA molecular landscapes differ radically by etiology, underscoring how distinct cancer subtypes in the same organ may arise through different extrinsic and intrinsic carcinogenic processes. Cancer Discov; 7(10); 1116-35. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Epigenômica/métodos , Estudo de Associação Genômica Ampla/métodos , Ilhas de CpG , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Receptor ErbB-2/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Proteína Supressora de Tumor p53/genética
15.
Nat Rev Gastroenterol Hepatol ; 14(8): 467-478, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28513632

RESUMO

Gastric cancer is a deadly malignancy afflicting close to a million people worldwide. Patient survival is poor and largely due to late diagnosis and suboptimal therapies. Disease heterogeneity is a substantial obstacle, underscoring the need for precision treatment strategies. Studies have identified different subgroups of gastric cancer displaying not just genetic, but also distinct epigenetic hallmarks. Accumulating evidence suggests that epigenetic abnormalities in gastric cancer are not mere bystander events, but rather promote carcinogenesis through active mechanisms. Epigenetic aberrations, induced by pathogens such as Helicobacter pylori, are an early component of gastric carcinogenesis, probably preceding genetic abnormalities. This Review summarizes our current understanding of the gastric cancer epigenome, highlighting key advances in recent years in both tumours and pre-malignant lesions, made possible through targeted and genome-wide technologies. We focus on studies related to DNA methylation and histone modifications, linking these findings to potential therapeutic opportunities. Lessons learned from the gastric cancer epigenome might also prove relevant for other gastrointestinal cancers.


Assuntos
Transformação Celular Neoplásica , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/genética , Humanos , Terapia de Alvo Molecular , Neoplasias Gástricas/tratamento farmacológico
16.
Cancer Discov ; 7(6): 630-651, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28320776

RESUMO

Promoter elements play important roles in isoform and cell type-specific expression. We surveyed the epigenomic promoter landscape of gastric adenocarcinoma, analyzing 110 chromatin profiles (H3K4me3, H3K4me1, H3K27ac) of primary gastric cancers, gastric cancer lines, and nonmalignant gastric tissues. We identified nearly 2,000 promoter alterations (somatic promoters), many deregulated in various epithelial malignancies and mapping frequently to alternative promoters within the same gene, generating potential pro-oncogenic isoforms (RASA3). Somatic promoter-associated N-terminal peptides displaying relative depletion in tumors exhibited high-affinity MHC binding predictions and elicited potent T-cell responses in vitro, suggesting a mechanism for reducing tumor antigenicity. In multiple patient cohorts, gastric cancers with high somatic promoter usage also displayed reduced T-cell cytolytic marker expression. Somatic promoters are enriched in PRC2 occupancy, display sensitivity to EZH2 therapeutic inhibition, and are associated with novel cancer-associated transcripts. By generating tumor-specific isoforms and decreasing tumor antigenicity, epigenomic promoter alterations may thus drive intrinsic tumorigenesis and also allow nascent cancers to evade host immunity.Significance: We apply epigenomic profiling to demarcate the promoter landscape of gastric cancer. Many tumor-specific promoters activate different promoters in the same gene, some generating pro-oncogenic isoforms. Tumor-specific promoters also reduce tumor antigenicity by causing relative depletion of immunogenic peptides, contributing to cancer immunoediting and allowing tumors to evade host immune attack. Cancer Discov; 7(6); 630-51. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 539.


Assuntos
Adenocarcinoma/genética , Regiões Promotoras Genéticas , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Epigenômica , Humanos
17.
Environ Epigenet ; 3(4): dvx014, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29492317

RESUMO

The exposure to adverse environmental conditions (e.g. poor nutrition) may lead to increased disease risk in an individual and their descendants. In some cases, the results may be sexually dimorphic. A range of phenotypes has been associated with deficiency in or defective metabolism of the vitamin folate. However, the molecular mechanism linking folate metabolism to development is still not well defined nor is it clear whether phenotypes are sex-specific. The enzyme methionine synthase reductase (MTRR) is required for the progression of folate metabolism and the utilization of methyl groups from the folate cycle. Previously, we showed that the hypomorphic Mtrrgt mutation in mice results in metabolic disruption, epigenetic instability, and a wide spectrum of developmental phenotypes (e.g. growth defects, congenital malformations) at midgestation that appear in subsequent wild-type generations. This transgenerational effect only occurs through the maternal lineage. Here, we explore whether the phenotypes that result from either intrinsic or ancestral Mtrr deficiency are sexually dimorphic. We found that no sexual dimorphism is apparent in either situation when the phenotypes were broadly or specifically defined. However, when we focused on the group of phenotypically normal conceptuses derived from maternal grandparental Mtrr deficiency, we observed an apparent increase in placental efficiency in each subsequent generation leading to F4 generation female embryos that weigh more than controls. These data suggest that ancestral abnormal folate metabolism may lead to male grandprogeny that are less able to adapt or female grandprogeny that are programmed to become more sensitive to folate availability in subsequent generations.

18.
Cell Oncol (Dordr) ; 39(2): 175-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26868260

RESUMO

BACKGROUND: Melanoma-associated antigen (MAGE)-A3 is a member of the family of cancer-testis antigens and has been found to be epigenetically regulated and aberrantly expressed in various cancer types. It has also been found that MAGE-A3 expression may correlate with an aggressive clinical course and with chemo-resistance. The objectives of this study were to assess the relationship between MAGE-A3 promoter methylation and expression and (1) gastric cancer patient survival and (2) its functional consequences in gastric cancer-derived cells. METHODS: Samples from two independent gastric cancer cohorts (including matched non-malignant gastric samples) were included in this study. MAGE-A3 methylation and mRNA expression levels were determined by methylation-specific PCR (MSP) and quantitative real-time PCR (qPCR), respectively. MAGE-A3 expression was knocked down in MKN1 gastric cancer-derived cells using miRNAs. In addition, in vitro cell proliferation, colony formation, apoptosis, cell cycle, drug treatment, immunohistochemistry and Western blot assays were performed. RESULTS: Clinical analysis of 223 primary patient-derived samples (ntumor = 161, nnormal = 62) showed a significant inverse correlation between MAGE-A3 promoter methylation and expression in the cancer samples (R = -0.63, p = 5.99e-19). A lower MAGE-A3 methylation level was found to be associated with a worse patient survival (HR: 1.5, 95 % CI: 1.02-2.37, p = 0.04). In addition, we found that miRNA-mediated knockdown of MAGE-A3 expression in MKN1 cells caused a reduction in its proliferation and colony forming capacities, respectively. Under stress conditions MAGE-A3 was found to regulate the expression of Bax and p21. MAGE-A3 knock down also led to an increase in Puma and Noxa expression, thus contributing to an enhanced docetaxel sensitivity in the gastric cancer-derived cells. CONCLUSIONS: From our results we conclude that MAGE-A3 expression is regulated epigenetically by promoter methylation, and that its expression contributes to gastric cell proliferation and drug sensitivity. This study underscores the potential implications of MAGE-A3 as a therapeutic target and prognostic marker in gastric cancer patients.


Assuntos
Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Antígenos de Neoplasias/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Docetaxel , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas , Estresse Fisiológico/efeitos dos fármacos , Análise de Sobrevida , Taxoides/farmacologia , Ensaio Tumoral de Célula-Tronco
19.
Reprod Biomed Online ; 27(6): 637-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24139597

RESUMO

During development, a fetus and its placenta must respond to a changing maternal environment to ensure normal growth is achieved and survival is maintained. The mechanisms behind developmental programming involve complex interactions between epigenetic and physiological processes, which are not well understood. Importantly, when programming goes awry, it puts the fetus at risk for disease later in life and may, in some instances, affect subsequent generations via epigenetic processes including DNA methylation. The one-carbon metabolism, which includes the folate, methionine and choline pathways, provides methyl groups necessary for DNA methylation and a normal epigenetic landscape. Accordingly, disruptions in this pathway affect placental development and function leading to altered fetal programming. Remarkably, recent studies have revealed that abnormal folate metabolism causes transgenerational effects probably through epigenetic inheritance. The epigenetic mechanisms behind this phenomenon are not well understood but they have important implications for the influence of the metabolic environment on epigenetic stability and non-genetic inheritance of disease. Importantly, there are increasing concerns that assisted reproductive technologies cause aberrant epigenetic profiles in embryos leading to abnormal fetal programming. How the negative epigenetic consequences of assisted reproduction treatment affect subsequent generations requires further investigation.


Assuntos
Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Desenvolvimento Fetal/fisiologia , Padrões de Herança/fisiologia , Redes e Vias Metabólicas/fisiologia , Transferases de Grupo de Um Carbono/metabolismo , Técnicas de Reprodução Assistida , Ácido Fólico/metabolismo , Humanos , Padrões de Herança/genética
20.
Cell ; 155(1): 81-93, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074862

RESUMO

The importance of maternal folate consumption for normal development is well established, yet the molecular mechanism linking folate metabolism to development remains poorly understood. The enzyme methionine synthase reductase (Mtrr) is necessary for utilization of methyl groups from the folate cycle. We found that a hypomorphic mutation of the mouse Mtrr gene results in intrauterine growth restriction, developmental delay, and congenital malformations, including neural tube, heart, and placental defects. Importantly, these defects were dependent upon the Mtrr genotypes of the maternal grandparents. Furthermore, we observed widespread epigenetic instability associated with altered gene expression in the placentas of wild-type grandprogeny of Mtrr-deficient maternal grandparents. Embryo transfer experiments revealed that Mtrr deficiency in mice lead to two distinct, separable phenotypes: adverse effects on their wild-type daughters' uterine environment, leading to growth defects in wild-type grandprogeny, and the appearance of congenital malformations independent of maternal environment that persist for five generations, likely through transgenerational epigenetic inheritance.


Assuntos
Anormalidades Congênitas/genética , Embrião de Mamíferos/metabolismo , Epigênese Genética , Ferredoxina-NADP Redutase/genética , Retardo do Crescimento Fetal/genética , Ácido Fólico/metabolismo , Animais , Cruzamentos Genéticos , Metilação de DNA , Feminino , Ferredoxina-NADP Redutase/metabolismo , Masculino , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...