Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 77(8): 2199-2208, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35512342

RESUMO

OBJECTIVES: To investigate the in vitro activity of fosfomycin, colistin and combinations thereof against planktonic and biofilm cultures of Gram-negative pathogens, mostly showing MDR phenotypes, at concentrations achievable via inhalation of aerosolized drugs. METHODS: Activity against planktonic cultures was tested by the chequerboard assay with 130 strains, including 52 Pseudomonas aeruginosa, 47 Klebsiella pneumoniae, 19 Escherichia coli, 7 Stenotrophomonas maltophilia and 5 Acinetobacter baumannii. Activity against biofilm cultures was tested by biofilm chequerboard and quantitative antibiofilm assays with a subset of 20 strains. In addition, 10 of these strains were tested in mutant prevention concentration (MPC) assays. RESULTS: Against planktonic cultures, synergism between fosfomycin and colistin was detected with a minority (10%) of strains (eight K. pneumoniae and five P. aeruginosa), while antagonism was never observed. Synergism between fosfomycin and colistin against biofilms was observed with the majority of tested strains (16/20 in biofilm chequerboard assays, and 18/20 in the quantitative antibiofilm assays), including representatives of each species and regardless of their resistance genotype or phenotype. Furthermore, combination of fosfomycin and colistin was found to significantly reduce the MPC of individual drugs. CONCLUSIONS: Fosfomycin and colistin in combination, at concentrations achievable via inhalation of nebulized drugs, showed notable synergy against MDR Gram-negative pathogens grown in biofilm, and were able to reduce the emergence of fosfomycin- and colistin-resistant subpopulations.


Assuntos
Colistina , Fosfomicina , Antibacterianos/farmacologia , Biofilmes , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Fosfomicina/farmacologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Plâncton
2.
Neuropharmacology ; 170: 108024, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32142791

RESUMO

OBJECTIVE: The aim of the study was to evaluate electrophysiological effects of safinamide on the intrinsic and synaptic properties of striatal spiny projection neurons (SPNs) and to characterize the possible therapeutic antiparkinsonian effect of this drug in dopamine (DA) denervated rats before and during levodopa (l-DOPA) treatment. BACKGROUND: Current therapeutic options in Parkinson's disease (PD) are primarily DA replacement strategies that usually cause progressive motor fluctuations and l-DOPA-induced dyskinesia (LIDs) as a consequence of SPNs glutamate-induced hyperactivity. As a reversible and use-dependent inhibitor of voltage-gated sodium channels, safinamide reduces the release of glutamate and possibly optimize the effect of l-DOPA therapy in PD. METHODS: Electrophysiological effects of safinamide (1-100 µM) were investigated by patch-clamp recordings in striatal slices of naïve, 6-hydroxydopamine (6-OHDA)-lesioned DA-denervated rats and DA-denervated animals chronically treated with l-DOPA. LIDs were assessed in vivo with and without chronic safinamide treatment and measured by scoring the l-DOPA-induced abnormal involuntary movements (AIMs). Motor deficit was evaluated with the stepping test. RESULTS: Safinamide reduced the SPNs firing rate and glutamatergic synaptic transmission in all groups, showing a dose-dependent effect with half maximal inhibitory concentration (IC50) values in the therapeutic range (3-5 µM). Chronic co-administration of safinamide plus l-DOPA in DA-denervated animals favored the recovery of corticostriatal long-term synaptic potentiation (LTP) and depotentiation of excitatory synaptic transmission also reducing motor deficits before the onset of LIDs. CONCLUSIONS: Safinamide, at a clinically relevant dose, optimizes the effect of l-DOPA therapy in experimental PD reducing SPNs excitability and modulating synaptic transmission. Co-administration of safinamide and l-DOPA ameliorates motor deficits.


Assuntos
Alanina/análogos & derivados , Antiparkinsonianos/uso terapêutico , Benzilaminas/uso terapêutico , Corpo Estriado/efeitos dos fármacos , Ácido Glutâmico , Rede Nervosa/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Antiparkinsonianos/farmacologia , Benzilaminas/farmacologia , Corpo Estriado/metabolismo , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Rede Nervosa/metabolismo , Técnicas de Cultura de Órgãos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Wistar
3.
Exp Neurol ; 328: 113287, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32205118

RESUMO

The antiarrhythmic sodium-channel blocker mexiletine is used to treat patients with myotonia. However, around 30% of patients do not benefit from mexiletine due to poor tolerability or suboptimal response. Safinamide is an add-on therapy to levodopa for Parkinson's disease. In addition to MAOB inhibition, safinamide inhibits neuronal sodium channels, conferring anticonvulsant activity in models of epilepsy. Here, we investigated the effects of safinamide on skeletal muscle hNav1.4 sodium channels and in models of myotonia, in-vitro and in-vivo. Using patch-clamp, we showed that safinamide reversibly inhibited sodium currents in HEK293T cells transfected with hNav1.4. At the holding potential (hp) of -120 mV, the half-maximum inhibitory concentrations (IC50) were 160 and 33 µM at stimulation frequencies of 0.1 and 10 Hz, respectively. The calculated affinity constants of safinamide were dependent on channel state: 420 µM for closed channels and 9 µM for fast-inactivated channels. The p.F1586C mutation in hNav1.4 greatly impaired safinamide inhibition, suggesting that the drug binds to the local anesthetic receptor site in the channel pore. In a condition mimicking myotonia, i.e. hp. of -90 mV and 50-Hz stimulation, safinamide inhibited INa with an IC50 of 6 µM, being two-fold more potent than mexiletine. Using the two-intracellular microelectrodes current-clamp method, action potential firing was recorded in vitro in rat skeletal muscle fibers in presence of the chloride channel blocker, 9-anthracene carboxylic acid (9-AC), to increase excitability. Safinamide counteracted muscle fiber hyperexcitability with an IC50 of 13 µM. In vivo, oral safinamide was tested in the rat model of myotonia. In this model, intraperitoneal injection of 9-AC greatly increased the time of righting reflex (TRR) due to development of muscle stiffness. Safinamide counteracted 9-AC induced TRR increase with an ED50 of 1.2 mg/kg, which is 7 times lower than that previously determined for mexiletine. In conclusion, safinamide is a potent voltage and frequency dependent blocker of skeletal muscle sodium channels. Accordingly, the drug was able to counteract abnormal muscle hyperexcitability induced by 9-AC, both in vitro and in vivo. Thus, this study suggests that safinamide may have potential in treating myotonia and warrants further preclinical and human studies to fully evaluate this possibility.


Assuntos
Alanina/análogos & derivados , Benzilaminas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Miotonia , Canal de Sódio Disparado por Voltagem NAV1.4/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Alanina/farmacologia , Animais , Células HEK293 , Humanos , Masculino , Ratos , Ratos Wistar
4.
Neuropharmacology ; 167: 108006, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32086070

RESUMO

To investigate whether the reversible MAO-B inhibitor and sodium channel blocker safinamide impairs glutamate release under parkinsonian conditions in vivo, and this effect is dependent on MAO-B inhibition, safinamide (and rasagiline as a comparator) were administered to 6-hydroxydopamine hemilesioned rats, a model of Parkinson's disease, and haloperidol-treated rats, a model of neuroleptic-induced parkinsonism. A microdialysis probe was implanted in the dopamine-depleted dorsolateral striatum, globus pallidus, subthalamic nucleus or substantia nigra reticulata of 6-hydroxydopamine hemilesioned rats. Glutamate and GABA release was stimulated by reverse dialysis of veratridine, and safinamide or rasagiline were acutely administered before veratridine at doses inhibiting MAO-B >50%. A microdialysis probe was implanted in the substantia nigra reticulata of naïve rats to monitor glutamate and GABA release following acute haloperidol and safinamide administration. Safinamide inhibited the veratridine-evoked glutamate release in the globus pallidus and subthalamic nucleus but not in the striatum and substantia nigra. Moreover, it reduced pallidal and nigral GABA release. Conversely, rasagiline failed to modify the veratridine-induced glutamate and GABA release in the basal ganglia. Safinamide also inhibited the haloperidol-induced nigral glutamate release. MAO-B inhibitors safinamide and rasagiline differ in their abilities to inhibit depolarization-evoked glutamate release in the basal ganglia of parkinsonian rats. The ineffectiveness of rasagiline suggests that MAO-B inhibition does not contribute to the antiglutamatergic activity of safinamide. The glutamate-inhibiting action of safinamide within the subthalamo-external pallidal loop, which shows abnormal activity in Parkinson's disease, might contribute to its therapeutic actions of improving motor performance without provoking troublesome dyskinesia.


Assuntos
Alanina/análogos & derivados , Benzilaminas/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Ácido Glutâmico/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Benzilaminas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Sprague-Dawley
5.
J Pharmacol Exp Ther ; 364(2): 198-206, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29167350

RESUMO

Safinamide has been recently approved as an add-on to levodopa therapy for Parkinson disease. In addition to inhibiting monoamine oxidase type B, it blocks sodium channels and modulates glutamate (Glu) release in vitro. Since this property might contribute to the therapeutic action of the drug, we undertook the present study to investigate whether safinamide inhibits Glu release also in vivo and whether this effect is consistent across different brain areas and is selective for glutamatergic neurons. To this aim, in vivo microdialysis was used to monitor the spontaneous and veratridine-induced Glu and GABA release in the hippocampus and basal ganglia of naive, awake rats. Brain levels of safinamide were measured as well. To shed light on the mechanisms underlying the effect of safinamide, sodium currents were measured by patch-clamp recording in rat cortical neurons. Safinamide maximally inhibited the veratridine-induced Glu and GABA release in hippocampus at 15 mg/kg, which reached free brain concentrations of 1.89-1.37 µM. This dose attenuated veratridine-stimulated Glu (but not GABA) release in subthalamic nucleus, globus pallidus, and substantia nigra reticulata, but not in striatum. Safinamide was ineffective on spontaneous neurotransmitter release. In vitro, safinamide inhibited sodium channels, showing a greater affinity at depolarized (IC50 = 8 µM) than at resting (IC50 = 262 µM) potentials. We conclude that safinamide inhibits in vivo Glu release from stimulated nerve terminals, likely via blockade of sodium channels at subpopulations of neurons with specific firing patterns. These data are consistent with the anticonvulsant and antiparkinsonian actions of safinamide and provide support for the nondopaminergic mechanism of its action.


Assuntos
Alanina/análogos & derivados , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Benzilaminas/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Alanina/farmacologia , Animais , Gânglios da Base/citologia , Hipocampo/citologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Sci Transl Med ; 2(59): 59ra86, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21106940

RESUMO

Essential hypertension is a complex, multifactorial disease associated with a high cardiovascular risk and whose genetic-molecular basis is heterogeneous and largely unknown. Although multiple antihypertensive therapies are available, the large individual variability in drug response results in only a modest reduction of the cardiovascular risk and unsatisfactory control of blood pressure in the hypertensive population as a whole. Two mechanisms, among others, are associated with essential hypertension and related organ damage: mutant α-adducin variants and high concentrations of endogenous ouabain. An antihypertensive agent, rostafuroxin, selectively inhibits these mechanisms in rodents. We investigated the molecular and functional effects of mutant α-adducin, ouabain, and rostafuroxin in hypertensive rats, human cells, and cell-free systems and demonstrated that both mutant α-adducin variants and the ouabain-Na,K-ATPase (Na(+)- and K(+)-dependent adenosine triphosphatase) complex can interact with the Src-SH2 (Src homology 2) domain, increasing Src activity and the Src-dependent Na,K-ATPase phosphorylation and activity. Wild-type α-adducin or Na,K-ATPase in the absence of ouabain showed no interaction with the Src-SH2 domain. Rostafuroxin disrupted the interactions between the Src-SH2 domain and mutant α-adducin or the ouabain-Na,K-ATPase complex and blunted Src activation and Na,K-ATPase phosphorylation, resulting in blood pressure normalization in the hypertensive rats. We have also shown the translatability of these data to humans in a pharmacogenomic clinical trial, as described in the companion paper.


Assuntos
Androstanóis/farmacologia , Anti-Hipertensivos/farmacologia , Proteínas de Ligação a Calmodulina/genética , Proteínas Mutantes/metabolismo , Ouabaína/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Proteínas de Ligação a Calmodulina/metabolismo , Linhagem Celular , Sistema Livre de Células , Ativação Enzimática/efeitos dos fármacos , Imunofluorescência , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Masculino , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Transfecção , Domínios de Homologia de src , Quinases da Família src/química , Quinases da Família src/metabolismo
7.
Am J Physiol Renal Physiol ; 295(2): F478-87, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18524856

RESUMO

Genetic variation in alpha-adducin cytoskeletal protein is implicated in the polymerization and bundling of actin and alteration of the Na/K pump, resulting in abnormal renal sodium transport and hypertension in Milan hypertensive rats and humans. To investigate the molecular involvement of alpha-adducin in controlling Na/K pump activity, wild-type or mutated rat and human alpha-adducin forms were, respectively, transfected into several renal cell lines. Through multiple experimental approaches (microscopy, enzymatic assays, coimmunoprecipitation), we showed that rat and human mutated forms increased Na/K pump activity and the number of pump units; moreover, both variants coimmunoprecipitate with Na/K pump. The increased Na/K pump activity was not due to changes in its basolateral localization, but to an alteration of Na/K pump residential time on the plasma membrane. Indeed, both rat and human mutated variants reduced constitutive Na/K pump endocytosis and similarly affected transferrin receptor trafficking and fluid-phase endocytosis. In fact, alpha-adducin was detected in clathrin-coated vesicles and coimmunoprecipitated with clathrin. These results indicate that adducin, besides its modulatory effects on actin cytoskeleton dynamics, might play a direct role in clathrin-dependent endocytosis. The constitutive reduction of the Na/K pump endocytic rate induced by mutated adducin variants may be relevant in Na-dependent hypertension.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Endocitose/fisiologia , Túbulos Renais Proximais/metabolismo , Rim/metabolismo , Mutação/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Absorção/fisiologia , Animais , Proteínas de Ligação a Calmodulina/metabolismo , Linhagem Celular , Cães , Humanos , Rim/citologia , Túbulos Renais Proximais/citologia , Ratos , Transfecção
8.
FEMS Yeast Res ; 7(4): 585-94, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17419770

RESUMO

Na,K-ATPase is a crucial enzyme for ion homeostasis in human tissues. Different isozymes are produced by assembly of four alpha- and three beta-subunits. The expression of the alpha3/beta1 isozyme is confined to brain and heart. Its heterologous production has so far never been attempted in a lower eukaryote. In this work we explored whether the methylotrophic yeast Pichia pastoris is capable of expressing the alpha3/beta1 isoform of human Na,K-ATPase. cDNAs encoding the alpha(3) and the beta(1)-subunits were cloned under the control of the inducible promoter of Pichia pastoris alcohol oxidase 1. Pichia pastoris could express the single alpha3- and beta1-subunits and even coexpress them after methanol induction. beta1-subunit was produced as a major 44-kDa glycosylated polypeptide and alpha3 as a 110-kDa unglycosylated polypeptide. Expression at the plasma membrane was limited in shaking flask cultures but by cultivating P. pastoris cells in a fermenter there was a 10-fold increase of the number of ouabain binding sites per cell. The exported enzyme was estimated to be about 0.230 mg L(-1) at the end of a bioreactor run. Na,K-ATPase proved active and the dissociation constant of the recombinant enzyme-ouabain interaction was determined.


Assuntos
Pichia/genética , Proteínas Recombinantes/genética , ATPase Trocadora de Sódio-Potássio/genética , Reatores Biológicos , DNA Complementar , Expressão Gênica , Humanos , Isoenzimas/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/química , ATPase Trocadora de Sódio-Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...