Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902383

RESUMO

Even though the toxic effects of antibiotics and heavy metals have been extensively studied in the last decades, their combined adverse impact on aquatic organisms is poorly understood. Therefore, the objective of this study was to assess the acute effects of a ciprofloxacin (Cipro) and lead (Pb) mixture on the 3D swimming behavior, acetylcholinesterase (AChE) activity, lipid peroxidation level (MDA-malondialdehyde), activity of some oxidative stress markers (SOD-superoxide dismutase and GPx-glutathione peroxidase), and the essential elements content (Cu-copper, Zn-zinc, Fe-iron, Ca-calcium, Mg-magnesium, Na-sodium and K-potassium) in the body of zebrafish (Danio rerio). For this purpose, zebrafish were exposed to environmentally relevant concentrations of Cipro, Pb, and a mixture for 96 h. The results revealed that acute exposure to Pb alone and in mixture with Cipro impaired zebrafish exploratory behavior by decreasing swimming activity and elevating freezing duration. Moreover, significant deficiencies of Ca, K, Mg, and Na contents, as well as an excess of Zn level, were observed in fish tissues after exposure to the binary mixture. Likewise, the combined treatment with Pb and Cipro inhibited the activity of AChE and increased the GPx activity and MDA level. The mixture produced more damage in all studied endpoints, while Cipro had no significant effect. The findings highlight that the simultaneous presence of antibiotics and heavy metals in the environment can pose a threat to the health of living organisms.


Assuntos
Ciprofloxacina , Chumbo , Poluentes Químicos da Água , Animais , Acetilcolinesterase , Antibacterianos/toxicidade , Ciprofloxacina/toxicidade , Chumbo/toxicidade , Metais Pesados/toxicidade , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834835

RESUMO

In the last century, industrial activities increased and caused multiple health problems for humans and animals. At this moment, heavy metals are considered the most harmful substances for their effects on organisms and humans. The impact of these toxic metals, which have no biological role, poses a considerable threat and is associated with several health problems. Heavy metals can interfere with metabolic processes and can sometimes act as pseudo-elements. The zebrafish is an animal model progressively used to expose the toxic effects of diverse compounds and to find treatments for different devastating diseases that human beings are currently facing. This review aims to analyse and discuss the value of zebrafish as animal models used in neurological conditions, such as Alzheimer's disease (AD), and Parkinson's disease (PD), particularly in terms of the benefits of animal models and the limitations that exist.


Assuntos
Doença de Alzheimer , Metais Pesados , Doenças Neurodegenerativas , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Peixe-Zebra , Intoxicação por Metais Pesados/complicações , Doença de Alzheimer/complicações
3.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216107

RESUMO

Mercury (Hg) is considered one of the most widespread toxic environmental pollutants, which seems to have multiple effects on organisms even at low concentrations. It has a critical role in many health problems with harmful consequences, with Hg primarily targeting the brain and its components, such as the central nervous system (CNS). Hg exposure was associated with numerous CNS disorders that frequently trigger Alzheimer's disease (AD). Patients with AD have higher concentrations of Hg in blood and brain tissue. This paper aims to emphasize a correlation between Hg and AD based on the known literature in the occupational field. The outcome shows that all these concerning elements could get attributed to Hg. However, recent studies did not investigate the molecular level of Hg exposure in AD. The present review highlights the interactions between Hg and AD in neuronal degenerations, apoptosis, autophagy, oxidative stress (OS), mitochondrial malfunctions, gastrointestinal (GI) microflora, infertility and altering gene expression.


Assuntos
Doença de Alzheimer/induzido quimicamente , Intoxicação por Mercúrio/complicações , Mercúrio/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Humanos
4.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884514

RESUMO

Environmental contamination from toxic metals and pesticides is an issue of great concern due to their harmful effects to human health and the ecosystems. In this framework, we assessed the adverse effects when aquatic organisms are exposed to toxicants such as deltamethrin (DM) and lead (Pb), alone or in combination, using zebrafish as a model. Moreover, we likewise evaluated the possible protective effect of vitamin C (VC) supplementation against the combined acute toxic effects of the two toxicants. Juvenile zebrafish were exposed to DM (2 µg L-1) and Pb (60 µg L-1) alone and in combination with VC (100 µg L-1) and responses were assessed by quantifying acetylcholinesterase (AChE) activity, lipid peroxidation (MDA), some antioxidant enzyme activities (SOD and GPx), three-dimension locomotion responses and changes of elements concentrations in the zebrafish body. Our results show that VC has mitigative effects against behavioral and biochemical alterations induced by a mixture of contaminants, demonstrating that it can be used as an effective antioxidant. Moreover, the observations in the study demonstrate zebrafish as a promising in vivo model for assessing the neuroprotective actions of bioactive compounds.


Assuntos
Ácido Ascórbico/farmacologia , Comportamento Animal/efeitos dos fármacos , Chumbo/toxicidade , Nitrilas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Piretrinas/toxicidade , Animais , Antioxidantes/farmacologia , Inseticidas/toxicidade , Poluentes Químicos da Água , Peixe-Zebra
5.
Oxid Med Cell Longev ; 2021: 9629102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691361

RESUMO

BACKGROUND: As every organ within the body, the brain is also extremely susceptible to a plethora of noxious agents that change its chemistry. One component frequently found in current products against harmful species to crops is rotenone whose effect under prolonged exposure has been demonstrated to cause neurodegenerative disorders such as Parkinson's disease. The latest reports have indeed revealed that rotenone promotes Parkinson's in humans, but studies aiming to show congruent effects in zebrafish (Danio rerio) are lacking. Material and Methods. In this context, the aim of the present study was to demonstrate how chronic administration of rotenone for 3 weeks impairs the locomotor activity and sociability and induces oxidative stress in zebrafish. RESULTS: There were no statistically significant differences following the analysis of their social interaction and locomotor tests (p > 0.05). However, several exceptions have been noted in the control, rotenone, and probiotics groups when we compared their locomotor activity during the pretreatment and treatment interval (p < 0.05). We further assessed the role of rotenone in disturbing the detoxifying system as represented by three enzymes known as superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Despite the fact that there were no statistically significant changes within SOD and GPx levels between the control group and rotenone, probiotics, and rotenone + probiotics (p > 0.05), relevant changes have been observed between the analyzed groups (p < 0.05 and p < 0.005, respectively). On the other hand, significant differences (p < 0.05) have been observed for MDA when we analyzed the data between the control group and the other three groups. CONCLUSIONS: Our results suggest that rotenone can be successfully used to trigger Parkinson's disease-related symptomatology in zebrafish.


Assuntos
Bifidobacterium longum/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Locomoção/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Doença de Parkinson/etiologia , Doença de Parkinson/microbiologia , Rotenona/efeitos adversos , Animais , Modelos Animais de Doenças , Humanos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...