Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373253

RESUMO

Neuroinflammation is one disease hallmark on the road to neurodegeneration in primary tauopathies. Thus, immunomodulation might be a suitable treatment strategy to delay or even prevent the occurrence of symptoms and thus relieve the burden for patients and caregivers. In recent years, the peroxisome proliferator-activated receptor γ (PPARγ) has received increasing attention as it is immediately involved in the regulation of the immune system and can be targeted by the anti-diabetic drug pioglitazone. Previous studies have shown significant immunomodulation in amyloid-ß (Aß) mouse models by pioglitazone. In this study, we performed long-term treatment over six months in P301S mice as a tauopathy model with either pioglitazone or placebo. We performed serial 18 kDa translocator protein positron-emission-tomography (TSPO-PET) imaging and terminal immunohistochemistry to assess microglial activation during treatment. Tau pathology was quantified via immunohistochemistry at the end of the study. Long-term pioglitazone treatment had no significant effect on TSPO-PET, immunohistochemistry read-outs of microglial activation, or tau pathology levels in P301S mice. Thus, we conclude that pioglitazone modifies the time course of Aß-dependent microglial activation, but does not significantly modulate microglial activation in response to tau pathology.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Pioglitazona/farmacologia , Microglia/metabolismo , Tauopatias/metabolismo , Peptídeos beta-Amiloides/metabolismo , PPAR gama/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo
3.
J Neuroinflammation ; 20(1): 68, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906584

RESUMO

OBJECTIVES: Reactive gliosis is a common pathological hallmark of CNS pathology resulting from neurodegeneration and neuroinflammation. In this study we investigate the capability of a novel monoamine oxidase B (MAO-B) PET ligand to monitor reactive astrogliosis in a transgenic mouse model of Alzheimer`s disease (AD). Furthermore, we performed a pilot study in patients with a range of neurodegenerative and neuroinflammatory conditions. METHODS: A cross-sectional cohort of 24 transgenic (PS2APP) and 25 wild-type mice (age range: 4.3-21.0 months) underwent 60 min dynamic [18F]fluorodeprenyl-D2 ([18F]F-DED), static 18 kDa translocator protein (TSPO, [18F]GE-180) and ß-amyloid ([18F]florbetaben) PET imaging. Quantification was performed via image derived input function (IDIF, cardiac input), simplified non-invasive reference tissue modelling (SRTM2, DVR) and late-phase standardized uptake value ratios (SUVr). Immunohistochemical (IHC) analyses of glial fibrillary acidic protein (GFAP) and MAO-B were performed to validate PET imaging by gold standard assessments. Patients belonging to the Alzheimer's disease continuum (AD, n = 2), Parkinson's disease (PD, n = 2), multiple system atrophy (MSA, n = 2), autoimmune encephalitis (n = 1), oligodendroglioma (n = 1) and one healthy control underwent 60 min dynamic [18F]F-DED PET and the data were analyzed using equivalent quantification strategies. RESULTS: We selected the cerebellum as a pseudo-reference region based on the immunohistochemical comparison of age-matched PS2APP and WT mice. Subsequent PET imaging revealed that PS2APP mice showed elevated hippocampal and thalamic [18F]F-DED DVR when compared to age-matched WT mice at 5 months (thalamus: + 4.3%; p = 0.048), 13 months (hippocampus: + 7.6%, p = 0.022) and 19 months (hippocampus: + 12.3%, p < 0.0001; thalamus: + 15.2%, p < 0.0001). Specific [18F]F-DED DVR increases of PS2APP mice occurred earlier when compared to signal alterations in TSPO and ß-amyloid PET and [18F]F-DED DVR correlated with quantitative immunohistochemistry (hippocampus: R = 0.720, p < 0.001; thalamus: R = 0.727, p = 0.002). Preliminary experience in patients showed [18F]F-DED VT and SUVr patterns, matching the expected topology of reactive astrogliosis in neurodegenerative (MSA) and neuroinflammatory conditions, whereas the patient with oligodendroglioma and the healthy control indicated [18F]F-DED binding following the known physiological MAO-B expression in brain. CONCLUSIONS: [18F]F-DED PET imaging is a promising approach to assess reactive astrogliosis in AD mouse models and patients with neurological diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Oligodendroglioma , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estudos Transversais , Gliose/patologia , Inflamação/metabolismo , Camundongos Transgênicos , Monoaminoxidase/metabolismo , Doenças Neurodegenerativas/metabolismo , Oligodendroglioma/metabolismo , Oligodendroglioma/patologia , Projetos Piloto , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
4.
Brain Commun ; 3(4): fcab273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34877534

RESUMO

Considerable fluctuations in cognitive performance and eventual dementia are an important characteristic of alpha-synucleinopathies, such as Parkinson's disease and Lewy Body dementia and are linked to cortical dysfunction. The presence of misfolded and aggregated alpha-synuclein in the cerebral cortex of patients has been suggested to play a crucial role in this process. However, the consequences of a-synuclein accumulation on the function of cortical networks at cellular resolution in vivo are largely unknown. Here, we induced robust a-synuclein pathology in the cerebral cortex using the striatal seeding model in wild-type mice. Nine months after a single intrastriatal injection of a-synuclein preformed fibrils, we observed profound alterations of the function of layer 2/3 cortical neurons in somatosensory cortex by in vivo two-photon calcium imaging in awake mice. We detected increased spontaneous activity levels, an enhanced response to whisking and increased synchrony. Stereological analyses revealed a reduction in glutamic acid decarboxylase 67-positive inhibitory neurons in the somatosensory cortex of mice injected with preformed fibrils. Importantly, these findings point to a disturbed excitation/inhibition balance as a relevant driver of circuit dysfunction, potentially underlying cognitive changes in alpha-synucleinopathies.

5.
Cell Calcium ; 97: 102411, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34082340

RESUMO

Ca2+ functions as an important intracellular signal for a wide range of cellular processes. These processes are selectively activated by controlled spatiotemporal dynamics of the free cytosolic Ca2+. Intracellular Ca2+ dynamics are regulated by numerous cellular parameters. Here, we established a new way to determine neuronal Ca2+ handling properties by combining the 'added buffer' approach [1] with perforated patch-clamp recordings [2]. Since the added buffer approach typically employs the standard whole-cell configuration for concentration-controlled Ca2+ indicator loading, it only allows for the reliable estimation of the immobile fraction of intracellular Ca2+ buffers. Furthermore, crucial components of intracellular signaling pathways are being washed out during prolonged whole-cell recordings, leading to cellular deterioration. By combining the added buffer approach with perforated patch-clamp recordings, these issues are circumvented, allowing the precise quantification of the cellular Ca2+ handling properties, including immobile as well as mobile Ca2+ buffers.

6.
Nat Neurosci ; 24(7): 913-929, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34002087

RESUMO

Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed. Here, we have developed new mouse models in which intersectional Cre/Dre-dependent recombination allowed for successful labeling, translational profiling and functional characterization of distinct POMC neurons expressing the leptin receptor (Lepr) and glucagon like peptide 1 receptor (Glp1r). Our experiments reveal that POMCLepr+ and POMCGlp1r+ neurons represent largely nonoverlapping subpopulations with distinct basic electrophysiological properties. They exhibit a specific anatomical distribution within the arcuate nucleus and differentially express receptors for energy-state communicating hormones and neurotransmitters. Finally, we identify a differential ability of these subpopulations to suppress feeding. Collectively, we reveal a notably distinct functional microarchitecture of critical metabolism-regulatory neurons.


Assuntos
Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Neurônios/fisiologia , Pró-Opiomelanocortina/metabolismo , Animais , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Hipotálamo/citologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia
7.
Neuron ; 106(6): 1009-1025.e10, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32302532

RESUMO

Calorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOCARC neurons represent a previously unrecognized GABAergic population of ARC neurons distinct from well-defined feeding regulatory AgRP or POMC neurons. PNOCARC neurons arborize densely in the ARC and provide inhibitory synaptic input to nearby anorexigenic POMC neurons. Optogenetic activation of PNOCARC neurons in the ARC and their projections to the bed nucleus of the stria terminalis promotes feeding. Selective ablation of these cells promotes the activation of POMC neurons upon HFD exposure, reduces feeding, and protects from obesity, but it does not affect food intake or body weight under normal chow consumption. We characterize PNOCARC neurons as a novel ARC neuron population activated upon palatable food consumption to promote hyperphagia.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Dieta Hiperlipídica , Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Hiperfagia , Obesidade , Aumento de Peso/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Neurônios GABAérgicos/metabolismo , Camundongos , Inibição Neural/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Pró-Opiomelanocortina/metabolismo , Precursores de Proteínas/metabolismo , Receptores Opioides/metabolismo , Núcleos Septais/fisiologia
8.
Cell Rep ; 25(2): 383-397.e10, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304679

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Homeostase , Mitocôndrias/patologia , Neurônios/metabolismo , Obesidade/prevenção & controle , Fosforilação Oxidativa , Pró-Opiomelanocortina/metabolismo , Animais , Fator de Indução de Apoptose/fisiologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Intolerância à Glucose , Hipotálamo/metabolismo , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Mitocôndrias/metabolismo , Neurônios/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia
9.
Elife ; 62017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28762947

RESUMO

Satiety-signaling, pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus play a pivotal role in the regulation of energy homeostasis. Recent studies reported altered mitochondrial dynamics and decreased mitochondria- endoplasmic reticulum contacts in POMC neurons during diet-induced obesity. Since mitochondria play a crucial role in Ca2+ signaling, we investigated whether obesity alters Ca2+ handling of these neurons in mice. In diet-induced obesity, cellular Ca2+ handling properties including mitochondrial Ca2+ uptake capacity are impaired, and an increased resting level of free intracellular Ca2+ is accompanied by a marked decrease in neuronal excitability. Experimentally increasing or decreasing intracellular Ca2+ concentrations reproduced electrophysiological properties observed in diet-induced obesity. Taken together, we provide the first direct evidence for a diet-dependent deterioration of Ca2+ homeostasis in POMC neurons during obesity development resulting in impaired function of these critical energy homeostasis-regulating neurons.


Assuntos
Potenciais de Ação , Núcleo Arqueado do Hipotálamo/fisiologia , Cálcio/metabolismo , Homeostase , Mitocôndrias/metabolismo , Neurônios/fisiologia , Animais , Dieta , Metabolismo Energético , Camundongos , Neurônios/química , Obesidade , Pró-Opiomelanocortina/análise
10.
Elife ; 62017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632132

RESUMO

In the arcuate nucleus of the hypothalamus (ARH) satiety signaling (anorexigenic) pro-opiomelanocortin (POMC)-expressing and hunger signaling (orexigenic) agouti-related peptide (AgRP)-expressing neurons are key components of the neuronal circuits that control food intake and energy homeostasis. Here, we assessed whether the catecholamine noradrenalin directly modulates the activity of these neurons in mice. Perforated patch clamp recordings showed that noradrenalin changes the activity of these functionally antagonistic neurons in opposite ways, increasing the activity of the orexigenic NPY/AgRP neurons and decreasing the activity of the anorexigenic POMC neurons. Cell type-specific transcriptomics and pharmacological experiments revealed that the opposing effect on these neurons is mediated by the activation of excitatory α1A - and ß- adrenergic receptors in NPY/AgRP neurons, while POMC neurons are inhibited via α2A - adrenergic receptors. Thus, the coordinated differential modulation of the key hypothalamic neurons in control of energy homeostasis assigns noradrenalin an important role to promote feeding.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Norepinefrina/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Perfilação da Expressão Gênica , Camundongos , Técnicas de Patch-Clamp
11.
Cell Rep ; 18(7): 1587-1597, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28199831

RESUMO

Uridine-diphosphate (UDP) and its receptor P2Y6 have recently been identified as regulators of AgRP neurons. UDP promotes feeding via activation of P2Y6 receptors on AgRP neurons, and hypothalamic UDP concentrations are increased in obesity. However, it remained unresolved whether inhibition of P2Y6 signaling pharmacologically, globally, or restricted to AgRP neurons can improve obesity-associated metabolic dysfunctions. Here, we demonstrate that central injection of UDP acutely promotes feeding in diet-induced obese mice and that acute pharmacological blocking of CNS P2Y6 receptors reduces food intake. Importantly, mice with AgRP-neuron-restricted inactivation of P2Y6 exhibit reduced food intake and fat mass as well as improved systemic insulin sensitivity with improved insulin action in liver. Our results reveal that P2Y6 signaling in AgRP neurons is involved in the onset of obesity-associated hyperphagia and systemic insulin resistance. Collectively, these experiments define P2Y6 as a potential target to pharmacologically restrict both feeding and systemic insulin resistance in obesity.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Resistência à Insulina/fisiologia , Neurônios/efeitos dos fármacos , Obesidade/tratamento farmacológico , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Dieta/métodos , Modelos Animais de Doenças , Comportamento Alimentar/efeitos dos fármacos , Hiperfagia/tratamento farmacológico , Hiperfagia/metabolismo , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Neurônios/metabolismo , Obesidade/metabolismo , Difosfato de Uridina/farmacologia
12.
J Neurophysiol ; 117(5): 2053-2064, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179480

RESUMO

In this study we analyzed transient voltage-activated K+ currents (IA) of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana The antennal lobe is the first synaptic processing station for olfactory information in insects. Local interneurons are crucial for computing olfactory information and form local synaptic connections exclusively in the antennal lobe, whereas a primary task of the projection neurons is the transfer of preprocessed olfactory information from the antennal lobe to higher order centers in the protocerebrum. The different physiological tasks of these neurons require specialized physiological and morphological neuronal phenotypes. We asked if and how the different physiological phenotypes are reflected in the functional properties of IA, which is crucial for shaping intrinsic electrophysiological properties of neurons. Whole cell patch-clamp recordings from adult male P. americana showed that all their central antennal lobe neurons can generate IA The current exhibited marked cell type-specific differences in voltage dependence of steady-state activation and inactivation, and differences in inactivation kinetics during sustained depolarization. Pharmacological experiments revealed that IA in all neuron types was partially blocked by α-dendrotoxin and phrixotoxin-2, which are considered blockers with specificity for Shaker- and Shal-type channels, respectively. These findings suggest that IA in each cell type is a mixed current generated by channels of both families. The functional role of IA was analyzed in experiments under current clamp, in which portions of IA were blocked by α-dendrotoxin or phrixotoxin-2. These experiments showed that IA contributes significantly to the intrinsic electrophysiological properties, such as the action potential waveform and membrane excitability.NEW & NOTEWORTHY In the insect olfactory system, projection neurons and local interneurons have task-specific electrophysiological and morphological phenotypes. Voltage-activated potassium channels play a crucial role in shaping functional properties of these neurons. This study revealed marked cell type-specific differences in the biophysical properties of transient voltage-activated potassium currents in central antennal lobe neurons.


Assuntos
Potenciais de Ação , Antenas de Artrópodes/fisiologia , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Antenas de Artrópodes/citologia , Encéfalo/citologia , Encéfalo/fisiologia , Células Cultivadas , Baratas , Neurônios/classificação , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia
13.
Front Cell Neurosci ; 10: 180, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507934

RESUMO

Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2(gt/gt) mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2(gt/gt) with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2(gt/gt) neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.

14.
Cell ; 165(1): 125-138, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27015310

RESUMO

Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação do Apetite , Glucose/metabolismo , Resistência à Insulina , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Comportamento Alimentar , Camundongos , Miostatina/genética , Optogenética , Transcriptoma
15.
Cell ; 162(6): 1404-17, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359991

RESUMO

Activation of orexigenic AgRP-expressing neurons in the arcuate nucleus of the hypothalamus potently promotes feeding, thus defining new regulators of AgRP neuron activity could uncover potential novel targets for obesity treatment. Here, we demonstrate that AgRP neurons express the purinergic receptor 6 (P2Y6), which is activated by uridine-diphosphate (UDP). In vivo, UDP induces ERK phosphorylation and cFos expression in AgRP neurons and promotes action potential firing of these neurons in brain slice recordings. Consequently, central application of UDP promotes feeding, and this response is abrogated upon pharmacologic or genetic inhibition of P2Y6 as well as upon pharmacogenetic inhibition of AgRP neuron activity. In obese animals, hypothalamic UDP content is elevated as a consequence of increased circulating uridine concentrations. Collectively, these experiments reveal a potential regulatory pathway in obesity, where peripheral uridine increases hypothalamic UDP concentrations, which in turn can promote feeding via PY6-dependent activation of AgRP neurons.


Assuntos
Regulação do Apetite , Hipotálamo/metabolismo , Obesidade/metabolismo , Receptores Purinérgicos P2/metabolismo , Difosfato de Uridina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Modelos Animais de Doenças , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Cell Rep ; 9(4): 1495-506, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25456138

RESUMO

Activation of c-Jun N-terminal kinase 1 (JNK1)- and inhibitor of nuclear factor kappa-B kinase 2 (IKK2)-dependent signaling plays a crucial role in the development of obesity-associated insulin and leptin resistance not only in peripheral tissues but also in the CNS. Here, we demonstrate that constitutive JNK activation in agouti-related peptide (AgRP)-expressing neurons of the hypothalamus is sufficient to induce weight gain and adiposity in mice as a consequence of hyperphagia. JNK activation increases spontaneous action potential firing of AgRP cells and causes both neuronal and systemic leptin resistance. Similarly, activation of IKK2 signaling in AgRP neurons also increases firing of these cells but fails to cause obesity and leptin resistance. In contrast to JNK activation, IKK2 activation blunts insulin signaling in AgRP neurons and impairs systemic glucose homeostasis. Collectively, these experiments reveal both overlapping and nonredundant effects of JNK- and IKK-dependent signaling in AgRP neurons, which cooperate in the manifestation of the metabolic syndrome.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Quinase I-kappa B/metabolismo , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neurônios/enzimologia , Obesidade/enzimologia , Potenciais de Ação/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Leptina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Neurônios/efeitos dos fármacos
17.
Cell ; 156(3): 495-509, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24462248

RESUMO

Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMC projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucose-stimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect.


Assuntos
Dieta Hiperlipídica , Hiperglicemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Lactação , Obesidade/metabolismo , Animais , Axônios/metabolismo , Feminino , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Gravidez , Pró-Opiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais
18.
Cell Metab ; 18(3): 445-55, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24011078

RESUMO

Brown adipose tissue (BAT) is a critical regulator of glucose, lipid, and energy homeostasis, and its activity is tightly controlled by the sympathetic nervous system. However, the mechanisms underlying CNS-dependent control of BAT sympathetic nerve activity (SNA) are only partly understood. Here, we demonstrate that catecholaminergic neurons in the locus coeruleus (LC) adapt their firing frequency to extracellular glucose concentrations in a K(ATP)-channel-dependent manner. Inhibiting K(ATP)-channel-dependent control of neuronal activity via the expression of a variant K(ATP) channel in tyrosine-hydroxylase-expressing neurons and in neurons of the LC enhances diet-induced obesity in mice. Obesity results from decreased energy expenditure, lower steady-state BAT SNA, and an attenuated ability of centrally applied glucose to activate BAT SNA. This impairs the thermogenic transcriptional program of BAT. Collectively, our data reveal a role of K(ATP)-channel-dependent neuronal excitability in catecholaminergic neurons in maintaining thermogenic BAT sympathetic tone and energy homeostasis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Neurônios Colinérgicos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Glucose/farmacologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Obesidade/etiologia , Obesidade/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Endocrinology ; 154(1): 172-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161869

RESUMO

In many mammals, body weight increases continuously throughout adulthood until late middle age. The hormone leptin is necessary for maintaining body weight, in that high levels of leptin promote negative energy balance. As animals age, however, their increase in body weight is accompanied by a steady rise in circulating leptin levels, indicating the progressive development of counterregulatory mechanisms to antagonize leptin's anorexigenic effects. Hypothalamic neurons coexpressing agouti-related peptide (AgRP) and neuropeptide Y are direct leptin targets. These neurons promote positive energy balance, and they inhibit anorexigenic proopiomelanocortin (POMC) neurons via direct neuropeptide action and release of γ-aminobutyric acid. We show here that AgRP and neuropeptide Y innvervation onto POMC neurons increases dramatically with age in male mice. This is associated with progressive increase of inhibitory postsynaptic currents and decrease of POMC firing rate with age. Neuronal activity is significantly attenuated in POMC neurons that receive a high density of AgRP puncta. These high-density AgRP inputs correlate with leptin levels in normal mice and are nearly absent in mice lacking leptin. The progression of increased AgRP innervation onto POMC somas is accelerated in hyperleptinemic, diet-induced obese mice. Together our study suggests that modulation of hypothalamic AgRP innervation constitutes one mechanism to counter the effects of the age-associated rise in leptin levels, thus sustaining body weight and fat mass at an elevated level in adulthood.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Gorduras na Dieta/efeitos adversos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Eletrofisiologia , Imunofluorescência , Masculino , Camundongos , Neuropeptídeo Y/metabolismo , Radioimunoensaio
20.
J Clin Invest ; 122(11): 4048-58, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23041622

RESUMO

Mutations in the AFG3L2 gene have been linked to spinocerebellar ataxia type 28 and spastic ataxia-neuropathy syndrome in humans; however, the pathogenic mechanism is still unclear. AFG3L2 encodes a subunit of the mitochondrial m-AAA protease, previously implicated in quality control of misfolded inner mitochondrial membrane proteins and in regulatory functions via processing of specific substrates. Here, we used a conditional Afg3l2 mouse model that allows restricted deletion of the gene in Purkinje cells (PCs) to shed light on the pathogenic cascade in the neurons mainly affected in the human diseases. We demonstrate a cell-autonomous requirement of AFG3L2 for survival of PCs. Examination of PCs prior to neurodegeneration revealed fragmentation and altered distribution of mitochondria in the dendritic tree, indicating that abnormal mitochondrial dynamics is an early event in the pathogenic process. Moreover, PCs displayed features pointing to defects in mitochondrially encoded respiratory chain subunits at early stages. To unravel the underlying mechanism, we examined a constitutive knockout of Afg3l2, which revealed a decreased rate of mitochondrial protein synthesis associated with impaired mitochondrial ribosome assembly. We therefore propose that defective mitochondrial protein synthesis, leading to early-onset fragmentation of the mitochondrial network, is a central causative factor in AFG3L2-related neurodegeneration.


Assuntos
Proteases Dependentes de ATP/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas do Tecido Nervoso/metabolismo , Biossíntese de Proteínas/fisiologia , Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares , Animais , Sobrevivência Celular , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Espasticidade Muscular/genética , Espasticidade Muscular/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Células de Purkinje , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...