Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38826459

RESUMO

Zika virus (ZIKV), a re-emerging flavivirus, is associated with devasting developmental and neurological disease outcomes particularly in infants infected in utero . Towards understanding the molecular underpinnings of the unique ZIKV disease pathologies, numerous transcriptome-wide studies have been undertaken. Notably, these studies have overlooked the assimilation of RNA-seq analysis from ZIKV-infected patients with cell culture model systems. In this study we find that ZIKV-infection of human lung adenocarcinoma A549 cells, mirrored both the transcriptional and alternative splicing profiles from previously published RNA-seq data of peripheral blood mononuclear cells collected from pediatric patients during early acute, late acute, and convalescent phases of ZIKV infection. Our analyses show that ZIKV infection in cultured cells correlates with transcriptional changes in patients, while the overlap in alternative splicing profiles was not as extensive. Overall, our data indicate that cell culture model systems support dissection of select molecular changes detected in patients and establishes the groundwork for future studies elucidating the biological implications of alternative splicing during ZIKV infection.

2.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546954

RESUMO

Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that can have devastating health consequences. The developmental and neurological effects from a ZIKV infection arise in part from the virus triggering cellular stress pathways and perturbing transcriptional programs. To date, the underlying mechanisms of transcriptional control directing viral restriction and virus-host interaction are understudied. Activating Transcription Factor 3 (ATF3) is a stress-induced transcriptional effector that modulates the expression of genes involved in a myriad of cellular processes, including inflammation and antiviral responses, to restore cellular homeostasis. While ATF3 is known to be upregulated during ZIKV infection, the mode by which ATF3 is activated and the specific role of ATF3 during ZIKV infection is unknown. In this study, we show via inhibitor and RNA interference approaches that ZIKV infection initiates the integrated stress response pathway to activate ATF4 which in turn induces ATF3 expression. Additionally, by using a CRISPR-Cas9 system to deplete ATF3, we found that ATF3 acts to limit ZIKV gene expression in A549 cells. In particular, the ATF3-dependent anti-ZIKV response occurred through regulation of innate immunity and autophagy pathways. We show that ATF3 differentially regulates the expression of innate immune response genes and suppresses the transcription of autophagy related genes to influence autophagic flux. Our study therefore highlights an important role for the integrated stress response pathway and ATF3 in establishing an antiviral effect during ZIKV infection.

3.
Anal Chem ; 93(22): 7860-7869, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34043326

RESUMO

We propose a novel approach for building a classification/identification framework based on the full complement of RNA post-transcriptional modifications (rPTMs) expressed by an organism at basal conditions. The approach relies on advanced mass spectrometry techniques to characterize the products of exonuclease digestion of total RNA extracts. Sample profiles comprising identities and relative abundances of all detected rPTM were used to train and test the capabilities of different machine learning (ML) algorithms. Each algorithm proved capable of identifying rigorous decision rules for differentiating closely related classes and correctly assigning unlabeled samples. The ML classifiers resolved different members of the Enterobacteriaceae family, alternative Escherichia coli serotypes, a series of Saccharomyces cerevisiae knockout mutants, and primary cells of the Homo sapiens central nervous system, which shared very similar genetic backgrounds. The excellent levels of accuracy and resolving power achieved by training on a limited number of classes were successfully replicated when the number of classes was significantly increased to escalate complexity. A dendrogram generated from ML-curated data exhibited a hierarchical organization that closely resembled those afforded by established taxonomic systems. Finer clustering patterns revealed the extensive effects induced by the deletion of a single pivotal gene. This information provided a putative roadmap for exploring the roles of rPTMs in their respective regulatory networks, which will be essential to decipher the epitranscriptomics code. The ubiquitous presence of RNA in virtually all living organisms promises to enable the broadest possible range of applications, with significant implications in the diagnosis of RNA-related diseases.


Assuntos
Algoritmos , RNA , Análise por Conglomerados , Humanos , Saccharomyces cerevisiae/genética
4.
Sci Adv ; 6(39)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32978154

RESUMO

Detection of viruses is critical for controlling disease spread. Recent emerging viral threats, including Zika virus, Ebola virus, and SARS-CoV-2 responsible for coronavirus disease 2019 (COVID-19) highlight the cost and difficulty in responding rapidly. To address these challenges, we develop a platform for low-cost and rapid detection of viral RNA with DNA nanoswitches that mechanically reconfigure in response to specific viruses. Using Zika virus as a model system, we show nonenzymatic detection of viral RNA with selective and multiplexed detection between related viruses and viral strains. For clinical-level sensitivity in biological fluids, we paired the assay with sample preparation using either RNA extraction or isothermal preamplification. Our assay requires minimal laboratory infrastructure and is adaptable to other viruses, as demonstrated by quickly developing DNA nanoswitches to detect SARS-CoV-2 RNA in saliva. Further development and field implementation will improve our ability to detect emergent viral threats and ultimately limit their impact.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , DNA de Cadeia Simples/genética , Eletroforese em Gel de Ágar/métodos , Pneumonia Viral/diagnóstico , RNA Viral/genética , Análise de Sequência de RNA/métodos , Sequência de Bases , COVID-19 , Linhagem Celular Tumoral , Infecções por Coronavirus/virologia , Dengue/diagnóstico , Dengue/virologia , Vírus da Dengue/genética , Eletroforese em Gel de Ágar/economia , Humanos , Limite de Detecção , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Saliva/virologia , Análise de Sequência de RNA/economia , Zika virus/genética , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia
5.
Viruses ; 12(5)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380717

RESUMO

The alternative splicing of pre-mRNAs expands a single genetic blueprint to encode multiple, functionally diverse protein isoforms. Viruses have previously been shown to interact with, depend on, and alter host splicing machinery. The consequences, however, incited by viral infection on the global alternative slicing (AS) landscape are under-appreciated. Here, we investigated the transcriptional and alternative splicing profile of neuronal cells infected with a contemporary Puerto Rican Zika virus (ZIKVPR) isolate, an isolate of the prototypical Ugandan ZIKV (ZIKVMR), and dengue virus 2 (DENV2). Our analyses revealed that ZIKVPR induced significantly more differential changes in expressed genes compared to ZIKVMR or DENV2, despite all three viruses showing equivalent infectivity and viral RNA levels. Consistent with the transcriptional profile, ZIKVPR induced a higher number of alternative splicing events compared to ZIKVMR or DENV2, and gene ontology analyses highlighted alternative splicing changes in genes associated with mRNA splicing. In summary, we show that ZIKV affects cellular RNA homeostasis not only at the transcriptional levels but also through the alternative splicing of cellular transcripts. These findings could provide new molecular insights into the neuropathologies associated with this virus.


Assuntos
Processamento Alternativo , Neuroblastoma/virologia , Infecção por Zika virus/genética , Zika virus/fisiologia , Ásia , Linhagem Celular Tumoral , Humanos , Transcrição Gênica , Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
6.
Wiley Interdiscip Rev RNA ; 11(3): e1576, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694072

RESUMO

Epitranscriptomics, the study of posttranscriptional chemical moieties placed on RNA, has blossomed in recent years. This is due in part to the emergence of high-throughput detection methods as well as the burst of discoveries showing biological function of select chemical marks. RNA modifications have been shown to affect RNA structure, localization, and functions such as alternative splicing, stabilizing transcripts, nuclear export, cap-dependent and cap-independent translation, microRNA biogenesis and binding, RNA degradation, and immune regulation. As such, the deposition of chemical marks on RNA has the unique capability to spatially and temporally regulate gene expression. The goal of this article is to present the exciting convergence of the epitranscriptomic and virology fields, specifically the deposition and biological impact of N7-methylguanosine, ribose 2'-O-methylation, pseudouridine, inosine, N6-methyladenosine, and 5-methylcytosine epitranscriptomic marks on gene expression of RNA viruses. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Assuntos
Epigênese Genética/genética , RNA Viral/genética , Perfilação da Expressão Gênica , RNA Viral/metabolismo , Transcrição Viral
7.
J Virol ; 93(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30944179

RESUMO

Flaviviruses limit the cell stress response by preventing the formation of stress granules (SGs) and modulate viral gene expression by subverting different proteins involved in the stress granule pathway. In this study, we investigated the formation of stress granules during Zika virus (ZIKV) infection and the role stress granule proteins play during the viral life cycle. Using immunofluorescence and confocal microscopy, we determined that ZIKV disrupted the formation of arsenite-induced stress granules and changed the subcellular distribution, but not the abundance or integrity, of stress granule proteins. We also investigated the role of different stress granule proteins in ZIKV infection by using target-specific short interfering RNAs to deplete Ataxin2, G3BP1, HuR, TIA-1, TIAR, and YB1. Knockdown of TIA-1 and TIAR affected ZIKV protein and RNA levels but not viral titers. Conversely, depletion of Ataxin2 and YB1 decreased virion production despite having only a small effect on ZIKV protein expression. Notably, however, depletion of G3BP1 and HuR decreased and increased ZIKV gene expression and virion production, respectively. Using an MR766 Gaussia Luciferase reporter genome together with knockdown and overexpression assays, G3BP1 and HuR were found to modulate ZIKV replication. These data indicate that ZIKV disrupts the formation of stress granules by sequestering stress granule proteins required for replication, where G3BP1 functions to promote ZIKV infection while HuR exhibits an antiviral effect. The results of ZIKV relocalizing and subverting select stress granule proteins might have broader consequences on cellular RNA homeostasis and contribute to cellular gene dysregulation and ZIKV pathogenesis.IMPORTANCE Many viruses inhibit SGs. In this study, we observed that ZIKV restricts SG assembly, likely by relocalizing and subverting specific SG proteins to modulate ZIKV replication. This ZIKV-SG protein interaction is interesting, as many SG proteins are also known to function in neuronal granules, which are critical in neural development and function. Moreover, dysregulation of different SG proteins in neurons has been shown to play a role in the progression of neurodegenerative diseases. The likely consequences of ZIKV modulating SG assembly and subverting specific SG proteins are alterations to cellular mRNA transcription, splicing, stability, and translation. Such changes in cellular ribostasis could profoundly affect neural development and contribute to the devastating developmental and neurological anomalies observed following intrauterine ZIKV infection. Our study provides new insights into virus-host interactions and the identification of the SG proteins that may contribute to the unusual pathogenesis associated with this reemerging arbovirus.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Regulação Viral da Expressão Gênica/genética , Zika virus/metabolismo , Animais , Ataxina-2/metabolismo , Linhagem Celular , DNA Helicases/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Biossíntese de Proteínas , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico/fisiologia , Antígeno-1 Intracelular de Células T/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Proteína 1 de Ligação a Y-Box/metabolismo , Infecção por Zika virus/metabolismo
8.
Nucleic Acids Res ; 46(11): 5776-5791, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29373715

RESUMO

More than 140 post-transcriptional modifications (PTMs) are known to decorate cellular RNAs, but their incidence, identity and significance in viral RNA are still largely unknown. We have developed an agnostic analytical approach to comprehensively survey PTMs on viral and cellular RNAs. Specifically, we used mass spectrometry to analyze PTMs on total RNA isolated from cells infected with Zika virus, Dengue virus, hepatitis C virus (HCV), poliovirus and human immunodeficiency virus type 1. All five RNA viruses significantly altered global PTM landscapes. Examination of PTM profiles of individual viral genomes isolated by affinity capture revealed a plethora of PTMs on viral RNAs, which far exceeds the handful of well-characterized modifications. Direct comparison of viral epitranscriptomes identified common and virus-specific PTMs. In particular, specific dimethylcytosine modifications were only present in total RNA from virus-infected cells, and in intracellular HCV RNA, and viral RNA from Zika and HCV virions. Moreover, dimethylcytosine abundance during viral infection was modulated by the cellular DEAD-box RNA helicase DDX6. By opening the Pandora's box on viral PTMs, this report presents numerous questions and hypotheses on PTM function and strongly supports PTMs as a new tier of regulation by which RNA viruses subvert the host and evade cellular surveillance systems.


Assuntos
Processamento Pós-Transcricional do RNA , Vírus de RNA/genética , RNA Viral/metabolismo , Linhagem Celular Tumoral , Citosina/metabolismo , RNA Helicases DEAD-box/fisiologia , Humanos , Proteínas Proto-Oncogênicas/fisiologia , Vírus de RNA/metabolismo , RNA Viral/química , Estresse Fisiológico/genética
9.
Virology ; 507: 231-241, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28456022

RESUMO

Hepatitis C virus (HCV) subverts the cellular DEAD-box RNA helicase DDX6 to promote virus infection. Using polysome gradient analysis and the subgenomic HCV Renilla reporter replicon genome, we determined that DDX6 does not affect HCV translation. Rather expression of the subgenomic HCV Renilla luciferase reporter at late times, as well as labeling of newly synthesized viral RNA with 4-thiouridine showed that DDX6 modulates replication. Because DDX6 is an effector protein of the microRNA pathway, we also investigated its role in miR-122-directed HCV gene expression. Similar to sequestering miR-122, depletion of DDX6 modulated HCV RNA stability. Interestingly, miR-122-HCV RNA interaction assays with mutant HCV genomes sites and compensatory exogenous miR-122 showed that DDX6 affects the function of miR-122 at one particular binding site. We propose that DDX6 facilitates the miR-122 interaction with HCV 5' UTR, which is necessary for stabilizing the viral genome and the switch between translation and replication.


Assuntos
RNA Helicases DEAD-box/metabolismo , Hepacivirus/metabolismo , Hepatite C/enzimologia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Viral/metabolismo , Regiões 5' não Traduzidas , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Hepacivirus/genética , Hepatite C/genética , Hepatite C/metabolismo , Hepatite C/virologia , Humanos , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , RNA Viral/genética
10.
J Virol ; 90(10): 4860-4863, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26937026

RESUMO

During infection, positive-strand RNA viruses subvert cellular machinery involved in RNA metabolism to translate viral proteins and replicate viral genomes to avoid or disable the host defense mechanisms. Cytoplasmic RNA granules modulate the stabilities of cellular and viral RNAs. Understanding how hepatitis C virus and other flaviviruses interact with the host machinery required for protein synthesis, localization, and degradation of mRNAs is important for elucidating how these processes occur in both virus-infected and uninfected cells.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/ultraestrutura , Genoma Viral , Hepacivirus/genética , Hepacivirus/imunologia , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/imunologia , RNA Viral/genética
11.
Virology ; 435(2): 472-84, 2013 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-23141719

RESUMO

Components of cytoplasmic processing bodies (P-bodies) and stress granules can be subverted during viral infections to modulate viral gene expression. Because hepatitis C virus (HCV) RNA abundance is regulated by P-body components such as microRNA miR-122, Argonaute 2 and RNA helicase RCK/p54, we examined whether HCV infection modulates P-bodies and stress granules during viral infection. It was discovered that HCV infection decreased the number of P-bodies, but induced the formation of stress granules. Immunofluorescence studies revealed that a number of P-body and stress granule proteins co-localized with viral core protein at lipid droplets, the sites for viral RNA packaging. Depletion of selected P-body proteins decreased overall HCV RNA and virion abundance. Depletion of stress granule proteins also decreased overall HCV RNA abundance, but surprisingly enhanced the accumulation of infectious, extracellular virus. These data argue that HCV subverts P-body and stress granule components to aid in viral gene expression at particular sites in the cytoplasm.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Regulação Viral da Expressão Gênica , Hepacivirus/fisiologia , RNA Viral/metabolismo , Liberação de Vírus/fisiologia , Linhagem Celular Tumoral , Hepacivirus/genética , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Hepatócitos/virologia , Humanos , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus
12.
J Mol Cell Biol ; 5(2): 99-110, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22923498

RESUMO

The transcriptional regulator deformed epidermal autoregulatory factor 1 (DEAF1) has been suggested to play a role in maintaining peripheral tolerance by controlling the transcription of peripheral tissue antigen genes in lymph node stromal cells (LNSCs). Here, we demonstrate that DEAF1 also regulates the translation of genes in LNSCs by controlling the transcription of the poorly characterized eukaryotic translation initiation factor 4 gamma 3 (Eif4g3) that encodes eIF4GII. Eif4g3 gene expression was reduced in the pancreatic lymph nodes of Deaf1-KO mice, non-obese diabetic mice, and type 1 diabetes patients, where functional Deaf1 is absent or diminished. Silencing of Deaf1 reduced Eif4g3 expression, but increased the expression of Caspase 3, a serine protease that degrades eIF4GII. Polysome profiling showed that reduced Eif4g3 expression in LNSCs resulted in the diminished translation of various genes, including Anpep, the gene for aminopeptidase N, an enzyme involved in fine-tuning antigen presentation on major histocompatibility complex (MHC) class II. Together these findings suggest that reduced DEAF1 function, and subsequent loss of Eif4g3 transcription may affect peripheral tissue antigen (PTA) expression in LNSCs and contribute to the pathology of T1D.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Fator de Iniciação Eucariótico 4G/biossíntese , Linfonodos/metabolismo , Pâncreas/metabolismo , Biossíntese de Proteínas , Fatores de Transcrição/metabolismo , Animais , Caspase 3/biossíntese , Caspase 3/genética , Caspase 3/imunologia , Proteínas de Ligação a DNA , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Tolerância Imunológica/genética , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout , Pâncreas/imunologia , Pâncreas/patologia , Células Estromais/imunologia , Células Estromais/metabolismo , Células Estromais/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
13.
PLoS One ; 5(9)2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20862261

RESUMO

The protein DDX3X is a DEAD-box RNA helicase that is essential for the hepatitis C virus (HCV) life cycle. The HCV core protein has been shown to bind to DDX3X both in vitro and in vivo. However, the specific interactions between these two proteins and the functional importance of these interactions for the HCV viral life cycle remain unclear. We show that amino acids 16-36 near the N-terminus of the HCV core protein interact specifically with DDX3X both in vitro and in vivo. Replication of HCV replicon NNeo/C-5B RNA (genotype 1b) is significantly suppressed in HuH-7-derived cells expressing green fluorescent protein (GFP) fusions to HCV core protein residues 16-36, but not by GFP fusions to core protein residues 16-35 or 16-34. Notably, the inhibition of HCV replication due to expression of the GFP fusion to HCV core protein residues 16-36 can be reversed by overexpression of DDX3X. These results suggest that the protein interface on DDX3X that binds the HCV core protein is important for replicon maintenance. However, infection of HuH-7 cells by HCV viruses of genotype 2a (JFH1) was not affected by expression of the GFP fusion protein. These results suggest that the role of DDX3X in HCV infection involves aspects of the viral life cycle that vary in importance between HCV genotypes.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação para Baixo , Genoma Viral , Hepacivirus/fisiologia , Hepatite C/metabolismo , Peptídeos/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral , Motivos de Aminoácidos , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Genótipo , Hepacivirus/química , Hepacivirus/genética , Hepatite C/virologia , Humanos , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Proteínas do Core Viral/química , Proteínas do Core Viral/genética
14.
Prog Mol Biol Transl Sci ; 90: 187-210, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20374742

RESUMO

MicroRNAs are 20-21 nucleotides-long noncoding RNAs that function as posttranscriptional regulators of gene expression in a variety of organisms ranging from plants to mammalian cells. These regulators are encoded by approximately 800 genes in the mammalian genome and target half of the mRNAs in mammalian cells. While the biogenesis of microRNAs is fairly well understood, the mechanism by which target genes are regulated remains controversial. The recent discoveries that viruses encode microRNAs or subvert host cell microRNAs has enhanced our knowledge about biological functions of microRNAs during disease and has suggested that microRNAs could be used as targets in antiviral gene therapy. This review will provide a brief history of microRNA research, discuss the biogenesis and mechanisms of microRNAs, and summarize findings that have employed inhibitors of microRNA miR-122 to treat hepatitis C virus-induced liver disease.


Assuntos
Inativação Gênica , MicroRNAs/metabolismo , Animais , Regulação da Expressão Gênica , Hepacivirus/metabolismo , Humanos , Fígado/metabolismo , Fígado/virologia , MicroRNAs/genética , Especificidade de Órgãos/genética
15.
Proteins ; 53(1): 68-75, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12945050

RESUMO

Despite the clear importance of the left-handed polyproline II (PPII) helical conformation in many physiologically important processes as well as its potential significance in protein unfolded states, little is known about the physical determinants of this conformation. We present here a scale of relative PPII helix-forming propensities measured for all residues, except tyrosine and tryptophan, in a proline-based host peptide system. Proline has the highest measured propensity in this system, a result of strong steric interactions that occur between adjacent prolyl rings. The other measured propensities are consistent with backbone solvation being an important component in PPII helix formation. Side chain to backbone hydrogen bonding may also play a role in stabilizing this conformation. The PPII helix-forming propensity scale will prove useful in future studies of the conformational properties of proline-rich sequences as well as provide insights into the prevalence of PPII helices in protein unfolded states.


Assuntos
Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...