Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Cancer ; 2024 Apr 16.
Artigo em Francês | MEDLINE | ID: mdl-38631986

RESUMO

INTRODUCTION: Physical activity is a major determinant in the prevention of chronic diseases, equally on the side effects of treatments and the consequences of the disease. It improves quality of life, but also reduces morbidity and mortality, and therefore health expenses. A sedentary lifestyle is the fourth cause of premature death in the world, in the context of chronic non-communicable diseases. In France, the prescription for adapted physical activity (APA) has been included in the law since 2016. With the development of "Maisons Sport santé", the Onco'sport program was developed to enable people affected by cancer to participate in adapted physical activity. The objective of our work is to explore the lived experience of cancer patients practicing adapted physical activity as part of the Onco'sport program. METHODS: This is a qualitative study of 10 semi-directed individual interviews with patients participating in the Onco'sport program, recruited from the "Maison Sport Santé" from Nîmes and the association "Les Roses du Gard". A phenomenological analysis was carried out with a semiopragmatic approach. RESULTS: For all participants, the APA through a program provides professional supervision of Physical Activity, influences adherence and builds confidence. This program is at the origin of changes in lifestyle habits and improves the relationship with illness and their cancer thanks to the physical and psychological benefits felt. Thus, APA appears as a full-fledged supportive care which requires informing patients and promoting it so that access is facilitated and becomes a standard. Health professionals including general practitioners do not currently have an important place in the promotion of APA, and patients most often obtain documentation on their own or through associations of patient. CONCLUSION: An APA program like Onco'sport is often the cause of a return to physical activity in patients, brings overall well-being and changes lifestyle habits. It seems important to promote physical activity to patients but also to the general population, given the benefits. This promotion involves easier access to this type of supervised program, financial support and better training of health professionals.

3.
New Phytol ; 232(3): 973-1122, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34608637

RESUMO

In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.


Assuntos
Ecossistema , Plantas , Bases de Dados Factuais , Ecologia , Fenótipo
4.
PLoS One ; 16(5): e0250966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014943

RESUMO

In the emerging new agricultural context, a drastic reduction in fertilizer usage is required. A promising way to maintain high crop yields while reducing fertilizer inputs is to breed new varieties with optimized root system architecture (RSA), designed to reach soil resources more efficiently. This relies on identifying key traits that underlie genotypic variability and plasticity of RSA in response to nutrient availability. The aim of our study was to characterize the RSA plasticity in response to nitrogen limitation of a set of contrasted oilseed rape genotypes, by using the ArchiSimple model parameters as screening traits. Eight accessions of Brassica napus were grown in long tubes in the greenhouse, under two contrasting levels of nitrogen availability. After plant excavation, roots were scanned at high resolution. Six RSA traits relative to root diameter, elongation rate and branching were measured, as well as nine growth and biomass allocation traits. The plasticity of each trait to nitrogen availability was estimated. Nitrogen-limited plants were characterized by a strong reduction in total biomass and leaf area. Even if the architecture traits were shown to be less plastic than allocation traits, significant nitrogen and genotype effects were highlighted on each RSA trait, except the root minimal diameter. Thus, the RSA of nitrogen-limited plants was primarily characterised by a reduced lateral root density, a smaller primary root diameter, associated with a stronger root dominance. Among the RSA traits measured, the inter-branch distance showed the highest plasticity with a level of 70%, in the same range as the most plastic allocation traits. This work suggests that lateral root density plays the key role in the adaptation of the root system to nitrogen availability and highlights inter-branch distance as a major target trait for breeding new varieties, better adapted to low input systems.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/genética , Raízes de Plantas/genética , Brassica napus/metabolismo , Fertilizantes , Variação Genética/genética , Genótipo , Nitrogênio/metabolismo , Fenótipo , Fósforo/metabolismo , Melhoramento Vegetal/métodos , Raízes de Plantas/crescimento & desenvolvimento , Óleo de Brassica napus , Solo/química
5.
Front Plant Sci ; 12: 658321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012460

RESUMO

Low phosphorus (P) bioavailability in the soil and concerns over global P reserves have emphasized the need to cultivate plants that acquire and use P efficiently. Root architecture adaptation to low P can be variable depending on species or even genotypes. To assess the genetic variability of root architectural traits and their responses to low P in the Lactuca genus, we examined fourteen genotypes including wild species, ancient and commercial lettuce cultivars at low (LP, 0.1 mmol. L-1) and high P (HP, 1 mmol. L-1). Plants were grown in cylindrical pots adapted for the excavation and observation of root systems, with an inert substrate. We identified substantial genetic variation in all the investigated root traits, as well as an effect of P availability on these traits, except on the diameter of thinner roots. At low P, the main responses were a decrease in taproot diameter, an increase in taproot dominance over its laterals and an increase in the inter-branch distance. Although the genotype x P treatment effect was limited to root depth, we identified a tradeoff between the capacity to maintain a thick taproot at low P and the dominance of the taproot over its laterals. Regardless of the P level, the phosphorus-use-efficiency (PUE) varied among lettuce genotypes and was significantly correlated with total root biomass regardless of the P level. As taproot depth and maximum apical diameter were the principal determinants of total root biomass, the relative increase in PUE at low P was observed in genotypes that showed the thickest apical diameters and/or those whose maximal apical diameter was not severely decreased at low P availability. This pre-eminence of the taproot in the adaptation of Lactuca genotypes to low P contrasts with other species which rely more on lateral roots to adapt to P stress.

6.
New Phytol ; 232(3): 1123-1158, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33159479

RESUMO

The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.


Assuntos
Ecossistema , Plantas , Atmosfera , Ecologia , Fenótipo
7.
J Exp Bot ; 71(12): 3524-3534, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32515479

RESUMO

In a given root system, individual roots usually exhibit a rather homogeneous tip structure although highly different diameters and growth patterns, and this diversity is of prime importance in the definition of the whole root system architecture and foraging characteristics. In order to represent and predict this diversity, we built a simple and generic model at root tip level combining structural and functional knowledge on root elongation. The tip diameter, reflecting meristem size, is used as a driving variable of elongation. It varies, in response to the fluctuations of photo-assimilate availability, between two limits (minimal and maximal diameter). The elongation rate is assumed to be dependent on the transient value of the diameter. Elongation stops when the tip reaches the minimal diameter. The model could satisfactorily reproduce patterns of root elongation and tip diameter changes observed in various species at different scales. Although continuous, the model could generate divergent root classes as classically observed within populations of lateral roots. This model should help interpret the large plasticity of root elongation patterns which can be obtained in response to different combinations of endogenous and exogenous factors. The parameters could be used in phenotyping the root system.


Assuntos
Meristema , Raízes de Plantas
8.
Ann Bot ; 126(4): 713-728, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32249296

RESUMO

BACKGROUND AND AIMS: Improved modelling of carbon assimilation and plant growth to low soil moisture requires evaluation of underlying mechanisms in the soil, roots, and shoots. The feedback between plants and their local environment throughout the whole spectrum soil-root-shoot-environment is crucial to accurately describe and evaluate the impact of environmental changes on plant development. This study presents a 3D functional structural plant model, in which shoot and root growth are driven by radiative transfer, photosynthesis, and soil hydrodynamics through different parameterisation schemes relating soil water deficit and carbon assimilation. The new coupled model is used to evaluate the impact of soil moisture availability on plant productivity for two different groups of flowering plants under different spatial configurations. METHODS: In order to address different aspects of plant development due to limited soil water availability, a 3D FSP model including root, shoot, and soil was constructed by linking three different well-stablished models of airborne plant, root architecture, and reactive transport in the soil. Different parameterisation schemes were used in order to integrate photosynthetic rate with root water uptake within the coupled model. The behaviour of the model was assessed on how the growth of two different types of plants, i.e. monocot and dicot, is impacted by soil water deficit under different competitive conditions: isolated (no competition), intra, and interspecific competition. KEY RESULTS: The model proved to be capable of simulating carbon assimilation and plant development under different growing settings including isolated monocots and dicots, intra, and interspecific competition. The model predicted that (1) soil water availability has a larger impact on photosynthesis than on carbon allocation; (2) soil water deficit has an impact on root and shoot biomass production by up to 90 % for monocots and 50 % for dicots; and (3) the improved dicot biomass production in interspecific competition was highly related to root depth and plant transpiration. CONCLUSIONS: An integrated model of 3D shoot architecture and biomass development with a 3D root system representation, including light limitation and water uptake considering soil hydraulics, was presented. Plant-plant competition and regulation on stomatal conductance to drought were able to be predicted by the model. In the cases evaluated here, water limitation impacted plant growth almost 10 times more than the light environment.


Assuntos
Solo , Água , Biomassa , Secas , Folhas de Planta , Raízes de Plantas , Brotos de Planta
9.
Front Plant Sci ; 10: 1020, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440270

RESUMO

Branching density (or the reciprocal: inter-branch distance) is an important trait which contributes to defining the number of roots in individual plants. The environmental and local variations in inter-branch distance have often been stressed, and simulations models have been put forward to take them into account within the dynamics of root system architecture (RSA). However, little is known about the interspecific and intra-plant variations of inter-branch distance. In this paper, we present an analysis which draws on 40 samples of plants belonging to 36 species collected in homogeneous soils, to address how the variations in inter-branch distance are structured within individual plants, and how this structure varies from one species to another. Using measurements of inter-branch distance on various roots of the same species and our knowledge of the branching process, we defined a simple and generic model dedicated to the simulation of the observed variations. This model distinguishes between two sub-processes: i) the longitudinal location of potential branching sites and ii) the effective emergence of lateral roots at these sites. Thus, it represents the variations in distance between the potential sites (with two parameters), and the probability of emergence of a lateral root at each site (one parameter). We show the ability of this model to account for the main variations in inter-branch distances with a limited number of parameters, and we estimated them for the different species. These parameters can be considered as promising traits to characterize-in a comprehensive and simple way-the genetic and environmental variations in the whole branching process at plant level. Based on the results, we make recommendations for carrying out comparable measurements of the branching density in developed plants. Moreover, we suggest the integration of this new model as a module in future RSA simulators, to improve their capacity to account for this important and highly variable characteristic of plant species.

10.
Trends Plant Sci ; 24(9): 810-825, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31320193

RESUMO

Lateral roots are essential for soil foraging and uptake of minerals and water. They feature a large morphological diversity that results from divergent primordia or root growth and development patterns. Besides a structured diversity, resulting from the hierarchical and developmental organization of root systems, there exists a random diversity, occurring between roots of similar age, of the same hierarchical order, and exposed to uniform conditions. The physiological bases and functional consequences of this random diversity are largely ignored. Here we review the evidence for such random diversity throughout the plant kingdom, present innovative approaches based on statistical modeling to account for such diversity, and set the list of its potential benefits in front of a variable and unpredictable soil environment.


Assuntos
Raízes de Plantas , Solo , Plantas , Água
11.
J Exp Bot ; 70(9): 2345-2357, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30329081

RESUMO

In recent years, many computational tools, such as image analysis, data management, process-based simulation, and upscaling tools, have been developed to help quantify and understand water flow in the soil-root system, at multiple scales (tissue, organ, plant, and population). Several of these tools work together or at least are compatible. However, for the uninformed researcher, they might seem disconnected, forming an unclear and disorganized succession of tools. In this article, we show how different studies can be further developed by connecting them to analyse soil-root water relations in a comprehensive and structured network. This 'explicit network of soil-root computational tools' informs readers about existing tools and helps them understand how their data (past and future) might fit within the network. We also demonstrate the novel possibilities of scale-consistent parameterizations made possible by the network with a set of case studies from the literature. Finally, we discuss existing gaps in the network and how we can move forward to fill them.


Assuntos
Simulação por Computador , Raízes de Plantas , Solo , Água
12.
Plant Methods ; 14: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930694

RESUMO

BACKGROUND: In order to efficiently determine genotypic differences in rooting patterns of crops, novel hardware and software are needed simultaneously to characterize dynamics of root development. RESULTS: We describe a prototype robotic monitoring platform-the RhizoChamber-Monitor for analyzing growth patterns of plant roots automatically. The RhizoChamber-Monitor comprises an automatic imaging system for acquiring sequential images of roots which grow on a cloth substrate in custom rhizoboxes, an automatic irrigation system and a flexible shading arrangement. A customized image processing software was developed to analyze the spatio-temporal dynamics of root growth from time-course images of multiple plants. This software can quantify overall growth of roots and extract detailed growth traits (e.g. dynamics of length and diameter) of primary roots and of individual lateral roots automatically. It can also identify local growth traits of lateral roots (pseudo-mean-length and pseudo-maximum-length) semi-automatically. Two cotton genotypes were used to test both the physical platform and the analysis software. CONCLUSIONS: The combination of hardware and software is expected to facilitate quantification of root geometry and its spatio-temporal growth patterns, and therefore to provide opportunities for high-throughput root phenotyping in support of crop breeding to optimize root architecture.

13.
Ann Bot ; 122(1): 107-115, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29697745

RESUMO

Background and Aims: In several disciplines, identifying relevant root traits to characterize the root system architecture of species or genotypes is a crucial step. To address this question, we analysed the inter-specific variations of root architectural traits in two contrasting environments. Methods: We sampled 60 species in natura, at two sites, each presenting homogeneous soil conditions. We estimated for each species and site a set of five traits used for the modelling of the root system architecture: extreme tip diameters (Dmin and Dmax), relative diameter range (Drange), mean inter-branch distance (IBD) and dominance slope between the diameters of parent and lateral roots (DlDm). Key Results: The five traits presented a highly significant species effect, explaining between 77 and 98 % of the total variation. Dmin, Dmax and Drange were particularly determined by the species, while DlDm and IBD exhibited a higher percentage of environmental variations. These traits make it possible to confirm two main axes of variation: 'fineness-density' (defined by Dmin and IBD) and 'dominance-heterorhizy' (DlDm and Drange), that together accounted for 84 % of the variations observed. Conclusions: We confirmed the interest of these traits in the characterization of the root system architecture in ecology and genetics, and suggest using them to enrich the 'root economic spectrum'.


Assuntos
Modelos Biológicos , Raízes de Plantas/anatomia & histologia , Ecologia , Meio Ambiente , Genótipo , Fenótipo , Raízes de Plantas/genética , Solo
14.
Methods Mol Biol ; 1761: 3-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29525945

RESUMO

In this chapter, we present methods that we routinely use to measure plant root traits in the field and under controlled environmental conditions (using rhizoboxes). We describe procedures to (1) collect, wash, and store root samples, (2) acquire images of washed root samples, and (3) measure root traits using image analysis. In addition, we also describe sampling methods for studying belowground productivity, soil exploration, and root distribution in the first soil layers at the community level (soil coring and ingrowth core method). Because the use of rhizoboxes allows a nondestructive and dynamic measurement of traits hardly accessible in the field, a section of this chapter is devoted to the acquisition and analysis of images of roots growing in rhizoboxes.


Assuntos
Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Característica Quantitativa Herdável , Fenótipo , Solo
15.
Front Plant Sci ; 8: 447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421089

RESUMO

Root system analysis is a complex task, often performed with fully automated image analysis pipelines. However, the outcome is rarely verified by ground-truth data, which might lead to underestimated biases. We have used a root model, ArchiSimple, to create a large and diverse library of ground-truth root system images (10,000). For each image, three levels of noise were created. This library was used to evaluate the accuracy and usefulness of several image descriptors classically used in root image analysis softwares. Our analysis highlighted that the accuracy of the different traits is strongly dependent on the quality of the images and the type, size, and complexity of the root systems analyzed. Our study also demonstrated that machine learning algorithms can be trained on a synthetic library to improve the estimation of several root system traits. Overall, our analysis is a call to caution when using automatic root image analysis tools. If a thorough calibration is not performed on the dataset of interest, unexpected errors might arise, especially for large and complex root images. To facilitate such calibration, both the image library and the different codes used in the study have been made available to the community.

16.
Ann Bot ; 118(7): 1337-1346, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27634575

RESUMO

BACKGROUND AND AIMS: Acropetal root branching is a major process which increases the number of growing tips and distributes their growth potential within the whole root system. METHODS: Using a method presented in a recent paper, the defined branching traits were estimated in 140 different species, and the branching patterns of monocots (45 species) and dicots (95 species) were compared. KEY RESULTS: It was checked that the method also applied to monocots (not considered in the previous paper), and that all traits could be estimated in each species. Variations of most traits were even larger for monocots than for dicots. Systematic differences appeared between these two groups: monocots tended to have a larger range in apical diameters (stronger heterorhizy), with both finer and thicker roots; the diameters of their lateral roots were also more variable; their roots exerted a stronger dominance over lateral branches. Altogether, species exhibited two main dependencies among their traits that were illustrated using two axes: (1) the 'fineness-density' axis separated the species which develop very fine roots and branch densely, from species without fine roots which space out their branches; and (2) the 'dominance-heterorhizy' axis separated the species according to the range in their apical diameter which was positively correlated to the level of dominance of mother roots over their branches. Both axes and correlations were remarkably similar for monocots and dicots. CONCLUSIONS: Beyond the overall typology, this study went on to validate the phenotyping method in Natura, and showed its potential to characterize the differences in groups of species.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Magnoliopsida/anatomia & histologia , Fenótipo , Raízes de Plantas/anatomia & histologia
17.
Ann Bot ; 117(3): 379-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26744490

RESUMO

BACKGROUND AND AIMS: Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system's overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. METHODS: A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. KEY RESULTS: The basal diameter of the lateral roots (orders 1-3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm(-1)) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved - intermediate positions were associated with higher densities of laterals. CONCLUSIONS: The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source-sink models.


Assuntos
Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento , Característica Quantitativa Herdável
18.
Ann Bot ; 114(3): 591-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25062886

RESUMO

BACKGROUND AND AIMS: Root branching, and in particular acropetal branching, is a common and important developmental process for increasing the number of growing tips and defining the distribution of their meristem size. This study presents a new method for characterizing the results of this process in natura from scanned images of young, branched parts of excavated roots. The method involves the direct measurement or calculation of seven different traits. METHODS: Young plants of 45 species of dicots were sampled from fields and gardens with uniform soils. Roots were separated, scanned and then measured using ImageJ software to determine seven traits related to root diameter and interbranch distance. RESULTS: The traits exhibited large interspecific variations, and covariations reflecting trade-offs. For example, at the interspecies level, the spacing of lateral roots (interbranch distance along the parent root) was strongly correlated to the diameter of the finest roots found in the species, and showed a continuum between two opposite strategies: making dense and fine lateral roots, or thick and well-spaced laterals. CONCLUSIONS: A simple method is presented for classification of branching patterns in roots that allows relatively quick sampling and measurements to be undertaken. The feasibilty of the method is demonstrated for dicotyledonous species and it has the potential to be developed more broadly for other species and a wider range of enivironmental conditions.


Assuntos
Botânica/métodos , Magnoliopsida/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , França , Terminologia como Assunto
19.
New Phytol ; 204(1): 149-158, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24954405

RESUMO

Our objective was to calibrate a model of the root system architecture on several Poaceae species and to assess its value to simulate several 'integrated' traits measured at the root system level: specific root length (SRL), maximum root depth and root mass. We used the model ArchiSimple, made up of sub-models that represent and combine the basic developmental processes, and an experiment on 13 perennial grassland Poaceae species grown in 1.5-m-deep containers and sampled at two different dates after planting (80 and 120 d). Model parameters were estimated almost independently using small samples of the root systems taken at both dates. The relationships obtained for calibration validated the sub-models, and showed species effects on the parameter values. The simulations of integrated traits were relatively correct for SRL and were good for root depth and root mass at the two dates. We obtained some systematic discrepancies that were related to the slight decline of root growth in the last period of the experiment. Because the model allowed correct predictions on a large set of Poaceae species without global fitting, we consider that it is a suitable tool for linking root traits at different organisation levels.


Assuntos
Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Calibragem , Simulação por Computador , Modelos Biológicos , Característica Quantitativa Herdável , Reprodutibilidade dos Testes
20.
Tree Physiol ; 34(1): 61-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24353084

RESUMO

In deciduous trees, shoot development in early spring is assumed to be achieved mainly at the expense of nitrogen (N) stores. Indeed, the possible compensation for poor autumn N storage by early spring N uptake has been little studied. We therefore determined the dynamics of spring N uptake in relation to spring N supply, carbon and N storage and shoot development. Young peach trees (Prunus persica L. Batsch, cv. 'GF305') were raised outdoors in a hydroponic set-up during the spring and summer, with an excessive N supply. During the autumn, half of the trees were then N limited. The following spring, the N supply remained either high or low, or changed from high to low or low to high. Between 6 March and 13 May, N uptake was measured automatically on an hourly basis, while shoot growth was monitored once a week. These in situ measurements were completed by three destructive harvests to assess organ composition in N and total non-structural carbohydrates (TNC). Until the end of April, N uptake was dependent on the autumn N treatment, being higher in trees that had been N limited in the autumn. Total non-structural carbohydrate mobilization was also higher in those trees that had lost at least 17 g TNC by 24 April, while TNC levels in non-limited trees remained stable or even rose. Shoot development, estimated by the number of elongated axes and leaves per axis, was also slightly delayed by an N limitation in autumn. After 24 April, N uptake rates increased notably under all treatments and was determined by the spring N supply. In trees receiving a high N supply in the spring, the uptake rates also displayed marked short-term variations. That reduced the differences between treatments and by 13 May no differences could be evidenced between the trees in terms of organ biomass and TNC and N contents, whatever the treatment. We concluded that in the early spring, N uptake may compensate for a deficit of N storage insofar as large quantities of TNC can be mobilized for that purpose.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Prunus/metabolismo , Biomassa , Carboidratos/análise , Fertilizantes , França , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Prunus/crescimento & desenvolvimento , Estações do Ano , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...