Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(7): 1180-1196.e8, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028415

RESUMO

Proper defense against microbial infection depends on the controlled activation of the immune system. This is particularly important for the RIG-I-like receptors (RLRs), which recognize viral dsRNA and initiate antiviral innate immune responses with the potential of triggering systemic inflammation and immunopathology. Here, we show that stress granules (SGs), molecular condensates that form in response to various stresses including viral dsRNA, play key roles in the controlled activation of RLR signaling. Without the SG nucleators G3BP1/2 and UBAP2L, dsRNA triggers excessive inflammation and immune-mediated apoptosis. In addition to exogenous dsRNA, host-derived dsRNA generated in response to ADAR1 deficiency is also controlled by SG biology. Intriguingly, SGs can function beyond immune control by suppressing viral replication independently of the RLR pathway. These observations thus highlight the multi-functional nature of SGs as cellular "shock absorbers" that converge on protecting cell homeostasis by dampening both toxic immune response and viral replication.


Assuntos
DNA Helicases , RNA Helicases , Humanos , DNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos de Estresse , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Imunidade Inata , Inflamação/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Transporte/metabolismo
2.
Eur J Immunol ; 50(9): 1268-1282, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767562

RESUMO

The family Picornaviridae comprises a large number of viruses that cause disease in broad spectrum of hosts, which have posed serious public health concerns worldwide and led to significant economic burden. A comprehensive understanding of the virus-host interactions during picornavirus infections will help to prevent and cure these diseases. Upon picornavirus infection, host pathogen recognition receptors (PRRs) sense viral RNA to activate host innate immune responses. The activated PRRs initiate signal transduction through a series of adaptor proteins, which leads to activation of several kinases and transcription factors, and contributes to the consequent expression of interferons (IFNs), IFN-inducible antiviral genes, as well as various inflammatory cytokines and chemokines. In contrast, to maintain viral replication and spread, picornaviruses have evolved several elegant strategies to block innate immune signaling and hinder host antiviral response. In this review, we will summarize the recent progress of how the members of family Picornaviridae counteract host immune response through evasion of PRRs detection, blocking activation of adaptor molecules and kinases, disrupting transcription factors, as well as counteraction of antiviral restriction factors. Such knowledge of immune evasion will help us better understand the pathogenesis of picornaviruses, and provide insights into developing antiviral strategies and improvement of vaccines.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Infecções por Picornaviridae/imunologia , Animais , Humanos , Picornaviridae/imunologia
3.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793956

RESUMO

Oncolytic viruses, including herpes simplex viruses (HSVs), are a new class of cancer therapeutic engineered to infect and kill cancer cells while sparing normal tissue. To ensure that oncolytic HSV (oHSV) is safe in the brain, all oHSVs in clinical trial for glioma lack the γ34.5 genes responsible for neurovirulence. However, loss of γ34.5 attenuates growth in cancer cells. Glioblastoma (GBM) is a lethal brain tumor that is heterogeneous and contains a subpopulation of cancer stem cells, termed GBM stem-like cells (GSCs), that likely promote tumor progression and recurrence. GSCs and matched serum-cultured GBM cells (ScGCs), representative of bulk or differentiated tumor cells, were isolated from the same patient tumor specimens. ScGCs are permissive to replication and cell killing by oHSV with deletion of the γ34.5 genes (γ34.5- oHSV), while patient-matched GSCs were not, implying an underlying biological difference between stem and bulk cancer cells. GSCs specifically restrict the synthesis of HSV-1 true late (TL) proteins, without affecting viral DNA replication or transcription of TL genes. A global shutoff of cellular protein synthesis also occurs late after γ34.5- oHSV infection of GSCs but does not affect the synthesis of early and leaky late viral proteins. Levels of phosphorylated eIF2α and eIF4E do not correlate with cell permissivity. Expression of Us11 in GSCs rescues replication of γ34.5- oHSV. The difference in degrees of permissivity between GSCs and ScGCs to γ34.5- oHSV illustrates a selective translational regulatory pathway in GSCs that may be operative in other stem-like cells and has implications for creating oHSVs.IMPORTANCE Herpes simplex virus (HSV) can be genetically engineered to endow cancer-selective replication and oncolytic activity. γ34.5, a key neurovirulence gene, has been deleted in all oncolytic HSVs in clinical trial for glioma. Glioblastoma stem-like cells (GSCs) are a subpopulation of tumor cells thought to drive tumor heterogeneity and therapeutic resistance. GSCs are nonpermissive for γ34.5- HSV, while non-stem-like cancer cells from the same patient tumors are permissive. GSCs restrict true late protein synthesis, despite normal viral DNA replication and transcription of all kinetic classes. This is specific for true late translation as early and leaky late transcripts are translated late in infection, notwithstanding shutoff of cellular protein synthesis. Expression of Us11 in GSCs rescues the replication of γ34.5- HSV. We have identified a cell type-specific innate response to HSV-1 that limits oncolytic activity in glioblastoma.


Assuntos
Neoplasias Encefálicas/virologia , Deleção de Genes , Glioblastoma/virologia , Células-Tronco Neoplásicas/virologia , Simplexvirus/fisiologia , Proteínas Virais/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Chlorocebus aethiops , Glioblastoma/metabolismo , Glioblastoma/terapia , Herpes Simples/genética , Células-Tronco Neoplásicas/metabolismo , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Proteínas de Ligação a RNA/metabolismo , Simplexvirus/genética , Células Vero , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...