Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337902

RESUMO

Domesticated rice Oryza sativa L. is a major staple food worldwide, and the cereal most sensitive to salinity. It originated from the wild ancestor Oryza rufipogon Griff., which was reported to possess superior salinity tolerance. Here, we examined the morpho-physiological responses to salinity stress (80 mM NaCl for 7 days) in seedlings of an O. rufipogon accession and two Italian O. sativa genotypes, Baldo (mildly tolerant) and Vialone Nano (sensitive). Under salt treatment, O. rufipogon showed the highest percentage of plants with no to moderate stress symptoms, displaying an unchanged shoot/root biomass ratio, the highest Na+ accumulation in roots, the lowest root and leaf Na+/K+ ratio, and highest leaf relative water content, leading to a better preservation of the plant architecture, ion homeostasis, and water status. Moreover, O. rufipogon preserved the overall leaf carbon to nitrogen balance and photosynthetic apparatus integrity. Conversely, Vialone Nano showed the lowest percentage of plants surviving after treatment, and displayed a higher reduction in the growth of shoots rather than roots, with leaves compromised in water and ionic balance, negatively affecting the photosynthetic performance (lowest performance index by JIP-test) and apparatus integrity. Baldo showed intermediate salt tolerance. Being O. rufipogon interfertile with O. sativa, it resulted a good candidate for pre-breeding towards salt-tolerant lines.

2.
Foods ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36673474

RESUMO

Rice bran is a rather underutilized by-product of the rice industry that nowadays is far from being valorized. In this study, the lipidomic profile of bran of the Italian rice variety, Roma, has been evaluated through ultra performance liquid chromatography-tandem mass spectrometry. Crude lipid extracts were obtained from rice bran treated with different green solvents (1-butanol, ethanol and methyl tert-butyl ether/methanol mixture) in combination with an ultrasonic pre-treatment, and then compared with extracts obtained with standard solvents (chloroform/methanol mixture). Lipid yield, number and type of lipids and composition of prevalent lipid classes extracted were evaluated in order to provide an exhaustive lipid profile of the rice bran and to identify the most efficient green solvent for solid-liquid extractions. Twelve different lipid classes and a maximum of 276 lipids were identified. Ethanol and methyl tert-butyl ether/methanol solvents provided higher lipid extraction yields, the former being the most effective solvent for the extraction of triglycerides and N-acylethanolamines and the latter the most effective for the extraction of diglycerides, phospholipids and ceramides at 4 °C. Moreover, extraction with ethanol at 20 °C gave similar results as at 4 °C in terms of lipid yield and for most of the classes of lipids extracted. Taken together, our results indicate ethanol and methyl tert-butyl ether/methanol as excellent solvents for lipid extraction from rice bran, with the aim to further valorize this food by-product in the perspective of a circular economy.

3.
Biosens Bioelectron ; 198: 113838, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34864246

RESUMO

In this study, we report on an easy-to-assemble amperometric electrochemical biosensor incorporating thylakoid membranes for the detection of photosynthetic herbicides. These molecules interfere with the light-induced photosynthetic electron transport occurring at the level of the photosystems within the thylakoid membranes, thus reducing the current of the associated bioelectrode. Thylakoid membranes isolated from pea plants were adsorbed directly on a bare carbon paper working electrode and placed in the measurement cell in the absence of any electrochemical mediator, obtaining a fully environmental-friendly biodevice capable of photocurrent densities up to 14 µA/cm2. Three photosynthetic herbicides inhibiting Photosystem II and belonging to different chemical classes, namely diuron, terbuthylazine and metribuzin, were detected by measuring the electrode photocurrent, which decreased reproducibly in a concentration-dependent manner in a range between 10-7 - 5 × 10-5 M of each herbicide. The limit of detection for the three herbicides was between 4-6 × 10-7 M. Storage stability tests revealed for the biosensor a half-life longer than 15 days at 4 °C and full stability up to 4 months at -80 °C. This study provides a simple, environmental-friendly and cost-effective procedure for the fabrication of a mediatorless carbon paper-based electrochemical biosensor characterized by high photocurrents, long storage stability, reproducible detections and good sensitivity.


Assuntos
Técnicas Biossensoriais , Herbicidas , Fotossíntese , Complexo de Proteína do Fotossistema II , Tilacoides
4.
ACS Synth Biol ; 10(12): 3518-3526, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34808039

RESUMO

Powered by (sun)light to oxidize water, cyanobacteria can directly convert atmospheric CO2 into valuable carbon-based compounds and meanwhile release O2 to the atmosphere. As such, cyanobacteria are promising candidates to be developed as microbial cell factories for the production of chemicals. Nevertheless, similar to other microbial cell factories, engineered cyanobacteria may suffer from production instability. The alignment of product formation with microbial fitness is a valid strategy to tackle this issue. We have described previously the "FRUITS" algorithm for the identification of metabolites suitable to be coupled to growth (i.e., side products in anabolic reactions) in the model cyanobacterium Synechocystis. sp PCC6803. However, the list of candidate metabolites identified using this algorithm can be somewhat limiting, due to the inherent structure of metabolic networks. Here, we aim at broadening the spectrum of candidate compounds beyond the ones predicted by FRUITS, through the conversion of a growth-coupled metabolite to downstream metabolites via thermodynamically favored conversions. We showcase the feasibility of this approach for malate production using fumarate as the growth-coupled substrate in Synechocystis mutants. A final titer of ∼1.2 mM was achieved for malate during photoautotrophic batch cultivations. Under prolonged continuous cultivation, the most efficient malate-producing strain can maintain its productivity for at least 45 generations, sharply contrasting with other producing Synechocystis strains engineered with classical approaches. Our study also opens a new possibility for extending the stable production concept to derivatives of growth-coupled metabolites, increasing the list of suitable target compounds.


Assuntos
Synechocystis , Malatos/metabolismo , Redes e Vias Metabólicas , Synechocystis/metabolismo
5.
Plants (Basel) ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451546

RESUMO

Photosystem II (PSII) is a multi-subunit enzymatic complex embedded in the thylakoid membranes responsible for the primary photosynthetic reactions vital for plants. Many herbicides used for weed control inhibit PSII by interfering with the photosynthetic electron transport at the level of the D1 protein, through competition with the native plastoquinone for the QB site. Molecular details of the interaction of these herbicides in the D1 QB site remain to be elucidated in plants. Here, we investigated the inhibitory effect on plant PSII of the PSII-inhibiting herbicides diuron, metobromuron, bentazon, terbuthylazine and metribuzin. We combined analysis of OJIP chlorophyll fluorescence kinetics and PSII activity assays performed on thylakoid membranes isolated from pea plants with molecular docking using the high-resolution PSII structure recently solved from the same plant. Both approaches showed for terbuthylazine, metribuzin and diuron the highest affinity for the D1 QB site, with the latter two molecules forming hydrogen bonds with His215. Conversely, they revealed for bentazon the lowest PSII inhibitory effect accompanied by a general lack of specificity for the QB site and for metobromuron an intermediate behavior. These results represent valuable information for future design of more selective herbicides with enhanced QB binding affinities to be effective in reduced amounts.

6.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207833

RESUMO

In plant grana thylakoid membranes Photosystem II (PSII) associates with a variable number of antenna proteins (LHCII) to form different types of supercomplexes (PSII-LHCII), whose organization is dynamically adjusted in response to light cues, with the C2S2 more abundant in high-light and the C2S2M2 in low-light. Paired PSII-LHCII supercomplexes interacting at their stromal surface from adjacent thylakoid membranes were previously suggested to mediate grana stacking. Here, we present the cryo-electron microscopy maps of paired C2S2 and C2S2M2 supercomplexes isolated from pea plants grown in high-light and low-light, respectively. These maps show a different rotational offset between the two supercomplexes in the pair, responsible for modifying their reciprocal interaction and energetic connectivity. This evidence reveals a different way by which paired PSII-LHCII supercomplexes can mediate grana stacking at diverse irradiances. Electrostatic stromal interactions between LHCII trimers almost completely overlapping in the paired C2S2 can be the main determinant by which PSII-LHCII supercomplexes mediate grana stacking in plants grown in high-light, whereas the mutual interaction of stromal N-terminal loops of two facing Lhcb4 subunits in the paired C2S2M2 can fulfil this task in plants grown in low-light. The high-light induced accumulation of the Lhcb4.3 protein in PSII-LHCII supercomplexes has been previously reported. Our cryo-electron microscopy map at 3.8 Å resolution of the C2S2 supercomplex isolated from plants grown in high-light suggests the presence of the Lhcb4.3 protein revealing peculiar structural features of this high-light-specific antenna important for photoprotection.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Pisum sativum/enzimologia , Tilacoides/enzimologia , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química
8.
Nat Commun ; 11(1): 1361, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170184

RESUMO

Grana are a characteristic feature of higher plants' thylakoid membranes, consisting of stacks of appressed membranes enriched in Photosystem II (PSII) and associated light-harvesting complex II (LHCII) proteins, together forming the PSII-LHCII supercomplex. Grana stacks undergo light-dependent structural changes, mainly by reorganizing the supramolecular structure of PSII-LHCII supercomplexes. LHCII is vital for grana formation, in which also PSII-LHCII supercomplexes are involved. By combining top-down and crosslinking mass spectrometry we uncover the spatial organization of paired PSII-LHCII supercomplexes within thylakoid membranes. The resulting model highlights a basic molecular mechanism whereby plants maintain grana stacking at changing light conditions. This mechanism relies on interactions between stroma-exposed N-terminal loops of LHCII trimers and Lhcb4 subunits facing each other in adjacent membranes. The combination of light-dependent LHCII N-terminal trimming and extensive N-terminal α-acetylation likely affects interactions between pairs of PSII-LHCII supercomplexes across the stromal gap, ultimately mediating membrane folding in grana stacks.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plantas/metabolismo , Proteínas Quinases/metabolismo , Tilacoides/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Embriófitas , Luz , Complexos de Proteínas Captadores de Luz/química , Espectrometria de Massas/métodos , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Proteínas Quinases/química , Proteômica
9.
Physiol Plant ; 166(1): 336-350, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30859575

RESUMO

About 475 million years ago, plants originated from an ancestral green alga and evolved first as non-vascular and later as vascular plants, becoming the primary producers of biomass on lands. During that time, the light-harvesting complex II (LHCII), responsible for sunlight absorption and excitation energy transfer to the photosystem II (PSII) core, underwent extensive differentiation. Lhcb4 is an ancestral LHCII that, in flowering plants, differentiated into up to three isoforms, Lhcb4.1, Lhcb4.2 and Lhcb4.3. The pivotal position of Lhcb4 in the PSII-LHCII supercomplex (PSII-LHCIIsc) allows functioning as linker for either S- or M-trimers of LHCII to the PSII core. The increased accumulation of Lhcb4.3 observed in PSII-LHCIIsc of plants acclimated to moderate and high light intensities induced us to investigate, whether this isoform has a preferential localization in a specific PSII-LHCIIsc conformation that might explain its light-dependent accumulation. In this work, by combining an improved method for separation of different forms of PSII-LHCIIsc from thylakoids of Pisum sativum L. grown at increasing irradiances with quantitative proteomics, we assessed that Lhcb4.3 is abundant in PSII-LHCIIsc of type C2 S2 , and, interestingly, similar results were found for the PsbR subunit. Phylogenetic comparative analysis on different taxa of the Viridiplantae lineage and structural modeling further pointed out to an effect of the evolution of different Lhcb4 isoforms on the light-dependent modulation of the PSII-LHCIIsc organization. This information provides new insight on the properties of the Lhcb4 and its isoforms and their role on the structure, function and regulation of PSII.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
10.
Plant Physiol Biochem ; 132: 524-534, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30316162

RESUMO

Photoautotrophic growth of Synechocystis sp. PCC 6803 in a flat-panel photobioreactor, run in turbidostat mode under increasing intensities of orange-red light (636 nm), showed a maximal growth rate (0.12 h-1) at 300 µmolphotons m-2 s-1, whereas first signs of photoinhibition were detected above 800 µmolphotons m-2 s-1. To investigate the dynamic modulation of the thylakoid proteome in response to photoinhibitory light intensities, quantitative proteomics analyses by SWATH mass spectrometry were performed by comparing thylakoid membranes extracted from Synechocystis grown under low-intensity illumination (i.e. 50 µmolphotons m-2 s-1) with samples isolated from cells subjected to photoinhibitory light regimes (800, 950 and 1460 µmolphotons m-2 s-1). We identified and quantified 126 proteins with altered abundance in all three photoinhibitory illumination regimes. These data reveal the strategies by which Synechocystis responds to photoinibitory growth irradiances of orange-red light. The accumulation of core proteins of Photosystem II and reduction of oxygen-evolving-complex subunits in photoinhibited cells revealed a different turnover and repair rates of the integral and extrinsic Photosystem II subunits with variation of light intensity. Furthermore, Synechocystis displayed a differentiated response to photoinhibitory regimes also regarding Photosystem I: the amount of PsaD, PsaE, PsaJ and PsaM subunits decreased, while there was an increased abundance of the PsaA, PsaB, Psak2 and PsaL proteins. Photoinhibition with 636 nm light also elicited an increased capacity for cyclic electron transport, a lowering of the amount of phycobilisomes and an increase of the orange carotenoid protein content, all presumably as a photoprotective mechanism against the generation of reactive oxygen species.


Assuntos
Luz , Proteoma/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Análise por Conglomerados , Complexo de Proteína do Fotossistema I/metabolismo , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Synechocystis/crescimento & desenvolvimento
11.
Plant Physiol Biochem ; 132: 356-362, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30261469

RESUMO

Salicornia veneta (Pignatti et Lausi) is an extreme halophyte living in salt marsh where NaCl concentration may be as high as 1 M. Here we report on the isolation and characterization of a PSII preparation obtained by Triton X-100 solubilisation of the thylakoid membrane. By a combination of gel electrophoresis, immunoblotting and mass spectrometry, the depletion of a number of PSII proteins such as PsbQ, PsbM and PsbT was highlighted. Moreover, the requirement of Cl- and Ca2+ for optimal oxygen evolution was determined, showing that in absence of PsbQ a higher level of these ions are required. At high Cl- concentrations, oxygen evolution was inhibited in the same way in Salicornia veneta and spinach. Reconstitution of Salicornia veneta PSII preparation with partially purified spinach PsbP and PsbQ restored oxygen evolution activity at low Cl- and Ca2+ concentrations. Adaptation to high salt makes several PSII proteins dispensable.


Assuntos
Chenopodiaceae/metabolismo , Complexo de Proteína do Fotossistema II/isolamento & purificação , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Tolerantes a Sal/metabolismo , Tilacoides/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Oxigênio/análise , Proteínas de Plantas/metabolismo , Spinacia oleracea/metabolismo
12.
Plant J ; 96(4): 786-800, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30118564

RESUMO

Plant thylakoid membranes contain hundreds of proteins that closely interact to cope with ever-changing environmental conditions. We investigated how Pisum sativum L. (pea) grown at different irradiances optimizes light-use efficiency through the differential accumulation of thylakoid proteins. Thylakoid membranes from plants grown under low (LL), moderate (ML) and high (HL) light intensity were characterized by combining chlorophyll fluorescence measurements with quantitative label-free proteomic analysis. Protein sequences retrieved from available transcriptomic data considerably improved thylakoid proteome profiling, increasing the quantifiable proteins from 63 to 194. The experimental approach used also demonstrates that this integrative omics strategy is powerful for unravelling protein isoforms and functions that are still unknown in non-model organisms. We found that the different growth irradiances affect the electron transport kinetics but not the relative abundance of photosystems (PS) I and II. Two acclimation strategies were evident. The behaviour of plants acclimated to LL was compared at higher irradiances: (i) in ML, plants turn on photoprotective responses mostly modulating the PSII light-harvesting capacity, either accumulating Lhcb4.3 or favouring the xanthophyll cycle; (ii) in HL, plants reduce the pool of light-harvesting complex II and enhance the PSII repair cycle. When growing at ML and HL, plants accumulate ATP synthase, boosting both cyclic and linear electron transport by finely tuning the ΔpH across the membrane and optimizing protein trafficking by adjusting the thylakoid architecture. Our results provide a quantitative snapshot of how plants coordinate light harvesting, electron transport and protein synthesis by adjusting the thylakoid membrane proteome in a light-dependent manner.


Assuntos
Perfilação da Expressão Gênica , Proteoma/metabolismo , Proteômica , Tilacoides/metabolismo , Transcriptoma , Aclimatação , Carotenoides/metabolismo , Clorofila/metabolismo , Combinação de Medicamentos , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Pisum sativum , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Extratos Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas , Estresse Fisiológico/genética
13.
PeerJ ; 6: e5256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065870

RESUMO

Synechocystis gathered momentum in modelling studies and biotechnological applications owing to multiple factors like fast growth, ability to fix carbon dioxide into valuable products, and the relative ease of genetic manipulation. Synechocystis physiology and metabolism, and consequently, the productivity of Synechocystis-based photobioreactors (PBRs), are heavily light modulated. Here, we set up a turbidostat-controlled lab-scale cultivation system in order to study the influence of varying orange-red light intensities on Synechocystis growth characteristics and photosynthetic activity. Synechocystis growth and photosynthetic activity were found to raise as supplied light intensity increased up to 500 µmol photons m-2 s-1 and to enter the photoinhibition state only at 800 µmol photons m-2 s-1. Interestingly, reverting the light to a non-photo-inhibiting intensity unveiled Synechocystis to be able to promptly recover. Furthermore, our characterization displayed a clear correlation between variations in growth rate and cell size, extending a phenomenon previously observed in other cyanobacteria. Further, we applied a modelling approach to simulate the effects produced by varying the incident light intensity on its local distribution within the PBR vessel. Our model simulations suggested that the photosynthetic activity of Synechocystis could be enhanced by finely regulating the intensity of the light incident on the PBR in order to prevent cells from experiencing light-induced stress and induce their exploitation of areas of different local light intensity formed in the vessel. In the latter case, the heterogeneous distribution of the local light intensity would allow Synechocystis for an optimized usage of light.

14.
Biochim Biophys Acta Bioenerg ; 1859(10): 1025-1038, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29803724

RESUMO

The flexible association of the light harvesting complex II (LHCII) to photosystem (PS) I and PSII to balance their excitation is a major short-term acclimation process of the thylakoid membrane, together with the thermal dissipation of excess absorbed energy, reflected in non-photochemical quenching of chlorophyll fluorescence (NPQ). In Pisum sativum, the leaf includes two main photosynthetic parts, the basal stipules and the leaflets. Since the stipules are less efficient in carbon fixation than leaflets, the adjustments of the thylakoid system, which safeguard the photosynthetic membrane against photodamage, were analysed. As compared to leaflets, the stipules experienced a decay in PSII photochemical activity. The supramolecular organization of photosystems in stipules showed a more conspicuous accumulation of large PSII-LHCII supercomplexes in the grana, but also a tendency to retain the PSI-LHCI-LHCII state transition complex and the PSI-LHCI-PSII-LHCII megacomplexes probably located at the interface between appressed and stroma-exposed membranes. As a consequence, stipules had a lower capacity to perform state transitions and the overall thylakoid architecture was less structurally flexible and ordered than in leaflets. Yet, stipules proved to be quite efficient in regulating the redox state of the electron transport chain and more capable of inducing NPQ than leaflets. It is proposed that, in spite of a relatively static thylakoid arrangement, LHCII interaction with both photosystems in megacomplexes can contribute to a regulated electron flow.

15.
Sci Rep ; 7(1): 10067, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855679

RESUMO

In higher plant thylakoids, the heterogeneous distribution of photosynthetic protein complexes is a determinant for the formation of grana, stacks of membrane discs that are densely populated with Photosystem II (PSII) and its light harvesting complex (LHCII). PSII associates with LHCII to form the PSII-LHCII supercomplex, a crucial component for solar energy conversion. Here, we report a biochemical, structural and functional characterization of pairs of PSII-LHCII supercomplexes, which were isolated under physiologically-relevant cation concentrations. Using single-particle cryo-electron microscopy, we determined the three-dimensional structure of paired C2S2M PSII-LHCII supercomplexes at 14 Å resolution. The two supercomplexes interact on their stromal sides through a specific overlap between apposing LHCII trimers and via physical connections that span the stromal gap, one of which is likely formed by interactions between the N-terminal loops of two Lhcb4 monomeric LHCII subunits. Fast chlorophyll fluorescence induction analysis showed that paired PSII-LHCII supercomplexes are energetically coupled. Molecular dynamics simulations revealed that additional flexible physical connections may form between the apposing LHCII trimers of paired PSII-LHCII supercomplexes in appressed thylakoid membranes. Our findings provide new insights into how interactions between pairs of PSII-LHCII supercomplexes can link adjacent thylakoids to mediate the stacking of grana membranes.


Assuntos
Clorofila/química , Complexos de Proteínas Captadores de Luz/ultraestrutura , Complexo de Proteína do Fotossistema II/ultraestrutura , Pisum sativum/química , Folhas de Planta/química , Tilacoides/química , Sítios de Ligação , Microscopia Crioeletrônica , Complexos de Proteínas Captadores de Luz/fisiologia , Simulação de Dinâmica Molecular , Pisum sativum/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Folhas de Planta/fisiologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Tilacoides/ultraestrutura
16.
Plant Physiol Biochem ; 111: 266-273, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27987471

RESUMO

This work focuses on the development of a molecular tool for purification of Photosystem II (PSII) from Nicotiana tabacum (L.). To this end, the chloroplast psbB gene encoding the CP47 PSII subunit was replaced with an engineered version of the same gene containing a C-terminal His-tag. Molecular analyses assessed the effective integration of the recombinant gene and its expression. Despite not exhibiting any obvious phenotype, the transplastomic plants remained heteroplasmic even after three rounds of regeneration under antibiotic selection. However, the recombinant His-tagged CP47 protein associated in vivo to the other PSII subunits allowing the isolation of a functional PSII core complex, although with low yield of extraction. These results will open up possible perspectives for further spectroscopic and structural studies.


Assuntos
Engenharia Genética , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Nicotiana/genética , Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/isolamento & purificação , Plastídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Genes de Plantas , Vetores Genéticos/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação/genética , Fenótipo , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Geneticamente Modificadas , Subunidades Proteicas/metabolismo , Análise Espectral
17.
Biochim Biophys Acta ; 1857(10): 1651-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27378191

RESUMO

Plants are sessile organisms and need to acclimate to ever-changing light conditions in order to survive. These changes trigger a dynamic reorganization of the membrane protein complexes in the thylakoid membranes. Photosystem II (PSII) and its light harvesting system (LHCII) are the major target of this acclimation response, and accumulating evidences indicate that the amount and composition of PSII-LHCII supercomplexes in thylakoids are dynamically adjusted in response to changes in light intensity and quality. In this study, we characterized the PSII-LHCII supercomplexes in thylakoid membranes of pea plants in response to long-term acclimation to different light intensities. We provide evidence of a reorganization of the PSII-LHCII supercomplexes showing distinct changes in their antenna moiety. Mass spectrometry analysis revealed a specific reduction of Lhcb3, Lhcb6 and M-LHCII trimers bound to the PSII cores, while the Lhcb4.3 isoform increased in response to high light intensities. The modulation of Lhcb protein content correlates with the reduction of the functional PSII antenna size. These results suggest that the Lhcb3, Lhcb4.3 and Lhcb6 antenna subunits are major players in modulation of the PSII antenna size upon long-term acclimation to increased light levels. PsbS was not detected in the isolated PSII-LHCII supercomplexes at any light condition, despite an increased accumulation in thylakoids of high light acclimated plants, suggesting that PsbS is not a constitutive component of PSII-LHCII supercomplexes.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Aclimatação/fisiologia , Luz , Espectrometria de Massas/métodos , Plantas/metabolismo , Tilacoides/metabolismo
18.
Photosynth Res ; 130(1-3): 19-31, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26749480

RESUMO

In higher plants, photosystem II (PSII) is a multi-subunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts, where it is present mostly in dimeric form within the grana. Its light-harvesting antenna system, LHCII, is composed of trimeric and monomeric complexes, which can associate in variable number with the dimeric PSII core complex in order to form different types of PSII-LHCII supercomplexes. Moreover, PSII-LHCII supercomplexes can laterally associate within the thylakoid membrane plane, thus forming higher molecular mass complexes, termed PSII-LHCII megacomplexes (Boekema et al. 1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452). In this study, pure PSII-LHCII megacomplexes were directly isolated from stacked pea thylakoid membranes by a rapid single-step solubilization, using the detergent n-dodecyl-α-D-maltoside, followed by sucrose gradient ultracentrifugation. The megacomplexes were subjected to biochemical and structural analyses. Transmission electron microscopy on negatively stained samples, followed by single-particle analyses, revealed a novel form of PSII-LHCII megacomplexes, as compared to previous studies (Boekema et al.1999a, in Biochemistry 38:2233-2239; Boekema et al. 1999b, in Eur J Biochem 266:444-452), consisting of two PSII-LHCII supercomplexes sitting side-by-side in the membrane plane, sandwiched together with a second copy. This second copy of the megacomplex is most likely derived from the opposite membrane of a granal stack. Two predominant forms of intact sandwiched megacomplexes were observed and termed, according to (Dekker and Boekema 2005 Biochim Biophys Acta 1706:12-39), as (C2S2)4 and (C2S2 + C2S2M2)2 megacomplexes. By applying a gel-based proteomic approach, the protein composition of the isolated megacomplexes was fully characterized. In summary, the new structural forms of isolated megacomplexes and the related modeling performed provide novel insights into how PSII-LHCII supercomplexes may bind to each other, not only in the membrane plane, but also between granal stacks within the chloroplast.


Assuntos
Complexos de Proteínas Captadores de Luz/isolamento & purificação , Complexo de Proteína do Fotossistema II/isolamento & purificação , Pisum sativum/fisiologia , Eletroforese em Gel de Poliacrilamida , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/fisiologia , Espectrometria de Massas/métodos , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Pisum sativum/química , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/fisiologia , Proteômica/métodos
19.
Front Plant Sci ; 6: 745, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442058

RESUMO

We investigated the existence of the transgenerational memory of iron (Fe) deficiency stress, in Arabidopsis thaliana. Plants were grown under Fe deficiency/sufficiency, and so were their offspring. The frequency of somatic homologous recombination (SHR) events, of DNA strand breaks as well as the expression of the transcription elongation factor TFIIS-like gene increase when plants are grown under Fe deficiency. However, SHR frequency, DNA strand break events, and TFIIS-like gene expression do not increase further when plants are grown for more than one generation under the same stress, and furthermore, they decrease back to control values within two succeeding generations grown under control conditions, regardless of the Fe deficiency stress history of the mother plants. Seedlings produced from plants grown under Fe deficiency evolve more oxygen than control seedlings, when grown under Fe sufficiency: however, this trait is not associated with any change in the protein profile of the photosynthetic apparatus and is not transmitted to more than one generation. Lastly, plants grown for multiple generations under Fe deficiency produce seeds with greater longevity: however, this trait is not inherited in offspring generations unexposed to stress. These findings suggest the existence of multiple-step control of mechanisms to prevent a genuine and stable transgenerational transmission of Fe deficiency stress memory, with the tightest control on DNA integrity.

20.
Phys Chem Chem Phys ; 16(13): 6139-45, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24562186

RESUMO

Outer Co(II) species in Co-ZIF-67 coordinate molecular oxygen both from the gas phase and liquid water, through an adsorption process (presumably yielding in both cases surface superoxo species), respectively weak and reversible (gas phase), and strong and irreversible (liquid); in the latter case desorption is however brought about by illumination with solar light comprising the UV component.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...