Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146377

RESUMO

For decades, near-infrared (NIR) spectroscopy has been a valuable tool for material analysis in a variety of applications, ranging from industrial process monitoring to quality assessment. Traditional spectrometers are typically bulky, fragile and expensive, which makes them unsuitable for portable and in-field use. Thus, there is a growing interest for miniaturized, robust and low-cost NIR sensors. In this study, we demonstrate a handheld NIR spectral sensor module, based on a fully-integrated multipixel detector array, sensitive in the 850-1700 nm wavelength range. Differently from a spectrometer, the spectral sensor measures a limited number of NIR spectral bands. The capabilities of the spectral sensor module were evaluated alongside a commercially available portable spectrometer for two application cases: to quantify the moisture content in rice grains and to classify plastic types. Both devices achieved the two sensing tasks with comparable performance. Moisture quantification was achieved with a root mean square error (RMSE) prediction of 1.4% and 1.1% by the spectral sensor and spectrometer, respectively. Classification of the plastic type was achieved with a prediction accuracy on unknown samples of 100% and 96.4% by the spectral sensor and spectrometer, respectively. The results from this study are promising and demonstrate the potential for the compact NIR modules to be used in a variety of NIR sensing applications.


Assuntos
Plásticos , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
Talanta ; 245: 123441, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405444

RESUMO

Illicit-drug production, trafficking and seizures are on an all-time high. This consequently raises pressure on investigative authorities to provide rapid forensic results to assist law enforcement and legal processes in drug-related cases. Ideally, every police officer is equipped with a detector to reliably perform drug testing directly at the incident scene. Such a detector should preferably be small, portable, inexpensive and shock-resistant but should also provide sufficient selectivity to prevent erroneous identifications. This study explores the concept of on-site drugs-of-abuse detection using a 1.8 × 2.2 mm2 multipixel near-infrared (NIR) spectral sensor that potentially can be integrated into a smartphone. This integrated sensor, based on an InGaAs-on-silicon technology, exploits an array of resonant-cavity enhanced photodetectors without any moving parts. A 100% correct classification of 11 common illicit drugs, pharmaceuticals and adulterants was achieved by chemometric modelling of the response of 15 wavelength-specific pixels. The performance on actual forensic casework was investigated on 246 cocaine-suspected powders and 39 MDMA-suspected ecstasy tablets yielding an over 90% correct classification in both cases. These findings show that presumptive drug testing by miniaturized spectral sensors is a promising development ultimately paving the way for a fully integrated drug-sensor in mobile communication devices used by law enforcement.


Assuntos
Cocaína , Drogas Ilícitas , N-Metil-3,4-Metilenodioxianfetamina , Smartphone , Detecção do Abuso de Substâncias
3.
Nat Commun ; 13(1): 103, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013200

RESUMO

Spectral sensing is increasingly used in applications ranging from industrial process monitoring to agriculture. Sensing is usually performed by measuring reflected or transmitted light with a spectrometer and processing the resulting spectra. However, realizing compact and mass-manufacturable spectrometers is a major challenge, particularly in the infrared spectral region where chemical information is most prominent. Here we propose a different approach to spectral sensing which dramatically simplifies the requirements on the hardware and allows the monolithic integration of the sensors. We use an array of resonant-cavity-enhanced photodetectors, each featuring a distinct spectral response in the 850-1700 nm wavelength range. We show that prediction models can be built directly using the responses of the photodetectors, despite the presence of multiple broad peaks, releasing the need for spectral reconstruction. The large etendue and responsivity allow us to demonstrate the application of an integrated near-infrared spectral sensor in relevant problems, namely milk and plastic sensing. Our results open the way to spectral sensors with minimal size, cost and complexity for industrial and consumer applications.

4.
Nat Commun ; 11(1): 4679, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917895

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Commun ; 11(1): 2407, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415066

RESUMO

Optical read-out of motion is widely used in sensing applications. Recent developments in micro- and nano-optomechanical systems have given rise to on-chip mechanical sensing platforms, potentially leading to compact and integrated optical motion sensors. However, these systems typically exploit narrow spectral resonances and therefore require tuneable lasers with narrow linewidth and low spectral noise, which makes the integration of the read-out extremely challenging. Here, we report a step towards the practical application of nanomechanical sensors, by presenting a sensor with ultrawide (∼80 nm) optical bandwidth. It is based on a nanomechanical, three-dimensional directional coupler with integrated dual-channel waveguide photodiodes, and displays small displacement imprecision of only 45 fm/Hz1/2 as well as large dynamic range (>30 nm). The broad optical bandwidth releases the need for a tuneable laser and the on-chip photocurrent read-out replaces the external detector, opening the way to fully-integrated nanomechanical sensors.

6.
Phys Rev Lett ; 124(12): 123902, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281836

RESUMO

Recent theories proposed a deep revision of the well-known expression for the Purcell factor, with counterintuitive effects, such as complex modal volumes and non-Lorentzian local density of states. We experimentally demonstrate these predictions in tailored coupled cavities on photonic crystal slabs with relatively low optical losses. Near-field hyperspectral imaging of quantum dot photoluminescence is proved to be a direct tool for measuring the line shape of the local density of states. The experimental results clearly evidence non-Lorentzian character, in perfect agreement with numerical and theoretical predictions. Spatial maps with deep subwavelength resolution of the real and imaginary parts of the complex mode volumes are presented. The generality of these results is confirmed by an additional set of far-field and time-resolved experiments in cavities with larger modal volume and higher quality factors.

7.
Nat Commun ; 9(1): 396, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374174

RESUMO

The optical behavior of coupled systems, in which the breaking of parity and time-reversal symmetry occurs, is drawing increasing attention to address the physics of the exceptional point singularity, i.e., when the real and imaginary parts of the normal-mode eigenfrequencies coincide. At this stage, fascinating phenomena are predicted, including electromagnetic-induced transparency and phase transitions. To experimentally observe the exceptional points, the near-field coupling to waveguide proposed so far was proved to work only in peculiar cases. Here, we extend the interference detection scheme, which lies at the heart of the Fano lineshape, by introducing generalized Fano lineshapes as a signature of the exceptional point occurrence in resonant-scattering experiments. We investigate photonic molecules and necklace states in disordered media by means of a near-field hyperspectral mapping. Generalized Fano profiles in material science could extend the characterization of composite nanoresonators, semiconductor nanostructures, and plasmonic and metamaterial devices.


Assuntos
Nanoestruturas , Fenômenos Ópticos , Fótons , Semicondutores , Análise Espectral
8.
Nat Commun ; 8(1): 2216, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263425

RESUMO

Spectrometry is widely used for the characterization of materials, tissues, and gases, and the need for size and cost scaling is driving the development of mini and microspectrometers. While nanophotonic devices provide narrowband filtering that can be used for spectrometry, their practical application has been hampered by the difficulty of integrating tuning and read-out structures. Here, a nano-opto-electro-mechanical system is presented where the three functionalities of transduction, actuation, and detection are integrated, resulting in a high-resolution spectrometer with a micrometer-scale footprint. The system consists of an electromechanically tunable double-membrane photonic crystal cavity with an integrated quantum dot photodiode. Using this structure, we demonstrate a resonance modulation spectroscopy technique that provides subpicometer wavelength resolution. We show its application in the measurement of narrow gas absorption lines and in the interrogation of fiber Bragg gratings. We also explore its operation as displacement-to-photocurrent transducer, demonstrating optomechanical displacement sensing with integrated photocurrent read-out.

9.
Opt Express ; 25(9): 10166-10176, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468391

RESUMO

Optical switches connect optical circuits, and route optical signals in networks. Nano-electromechanical systems can in principle enable compact and power-effective switches that can be integrated in photonic circuits. We proposed an optical switch based on four coupled waveguides arranged in three-dimensional configuration. The switching operation is controlled by a cantilever displacement of only 55 nm. Simulations show that our proposed device requires a low switching voltage down to 3V and can operate at frequencies in the MHz range. Our results also pave the way towards novel optical components that electromechanically manipulate light in both the horizontal and the vertical direction in photonic circuits.

10.
Sci Rep ; 5: 9606, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26045401

RESUMO

Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the "campanile tip", a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

11.
Nat Commun ; 5: 5786, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25503405

RESUMO

Single excitons in semiconductor microcavities represent a solid state and scalable platform for cavity quantum electrodynamics, potentially enabling an interface between flying (photon) and static (exciton) quantum bits in future quantum networks. While both single-photon emission and the strong coupling regime have been demonstrated, further progress has been hampered by the inability to control the coherent evolution of the cavity quantum electrodynamics system in real time, as needed to produce and harness charge-photon entanglement. Here using the ultrafast electrical tuning of the exciton energy in a photonic crystal diode, we demonstrate the dynamic control of the coupling of a single exciton to a photonic crystal cavity mode on a sub-nanosecond timescale, faster than the natural lifetime of the exciton. This opens the way to the control of single-photon waveforms, as needed for quantum interfaces, and to the real-time control of solid-state cavity quantum electrodynamics systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...