Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1030414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819061

RESUMO

The rough endoplasmic reticulum (r-ER) is of paramount importance for adaptive responses to biotic stresses due to an increased demand for de novo synthesis of immunity-related proteins and signaling components. In nucleate cells, disturbance of r-ER integrity and functionality leads to the "unfolded protein response" (UPR), which is an important component of innate plant immune signalling. In contrast to an abundance of reports on r-ER responses to biotic challenges, sieve-element endoplasmic reticulum (SE-ER) responses to phytoplasma infection have not been investigated. We found that morphological SE-ER changes, associated with phytoplasma infection, are accompanied by differential expression of genes encoding proteins involved in shaping and anchoring the reticulum. Phytoplasma infection also triggers an increased release of bZIP signals from the (SE-ER)/r-ER and consequent differential expression of UPR-related genes. The modified expression patterns seem to reflect a trade-off between survival of host cells, needed for the phytoplasmic biotrophic lifestyle, and phytoplasmas. Specialized plasmodesmata between sieve element and companion cell may provide a corridor for transfer of phytoplasma effectors inducing UPR-related gene expression in companion cells.

2.
Funct Plant Biol ; 48(10): 1074-1085, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462050

RESUMO

Grapevine leaf mottling and deformation is a novel grapevine disease that has been associated with grapevine Pinot gris virus (GPGV). The virus was observed exclusively inside membrane-bound structures in the bundle sheath cells of the infected grapevines. As reported widely in the literature, many positive-sense single-stranded RNA viruses modify host-cell membranes to form a variety of deformed organelles, which shelter viral genome replication from host antiviral compounds. Morphologically, the GPGV-associated membranous structures resemble the deformed endoplasmic reticulum described in other virus-host interactions. In this study we investigated the GPGV-induced membranous structures observed in the bundle sheath cells of infected plants. The upregulation of different ER stress-related genes was evidenced by RT-qPCR assays, further confirming the involvement of the ER in grapevine/GPGV interaction. Specific labelling of the membranous structures with an antibody against luminal-binding protein identified them as ER. Double-stranded RNA molecules, which are considered intermediates of viral replication, were localised exclusively in the ER-derived structures and indicated that GPGV exploited this organelle to replicate itself in a shelter niche. Novel analyses using focussed ion-beam scanning electron microscopy (FIB-SEM) were performed in grapevine leaf tissues to detail the three-dimensional organisation of the ER-derived structures and their remodelling due to virus replication.


Assuntos
Flexiviridae , Vitis , Retículo Endoplasmático , Doenças das Plantas , Folhas de Planta
3.
Mol Plant Microbe Interact ; 34(9): 1010-1023, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33983824

RESUMO

Grapevine Pinot gris virus (GPGV) is an emerging trichovirus that has been putatively associated with a novel grapevine disease known as grapevine leaf mottling and deformation (GLMD). Yet the role of GPGV in GLMD disease is poorly understood, since it has been detected both in symptomatic and symptomless grapevines. We exploited a recently constructed GPGV infectious clone (pRI::GPGV-vir) to induce an antiviral response in Nicotiana benthamiana plants. In silico prediction of virus-derived small interfering RNAs and gene expression analyses revealed the involvement of DCL4, AGO5, and RDR6 genes during GPGV infection, suggesting the activation of the posttranscriptional gene-silencing (PTGS) pathway as a plant antiviral defense. PTGS suppression assays in transgenic N. benthamiana 16c plants revealed the ability of the GPGV coat protein to suppress RNA silencing. This work provides novel insights on the interaction between GPGV and its host, revealing the ability of the virus to trigger and suppress antiviral RNA silencing.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Flexiviridae , Vitis , Antivirais , Interações entre Hospedeiro e Microrganismos , Doenças das Plantas , Interferência de RNA , Nicotiana
4.
Pathogens ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430372

RESUMO

Xylella fastidiosa is a xylem-limited bacterium phylogenetically related to the xanthomonads, with an unusually large and diversified range of plant hosts. To ascertain the origin of its peculiarities, its pan-genome was scanned to identify the genes that are not coherent with its phylogenetic position within the order Xanthomonadales. The results of the analysis revealed that a large fraction of the genes of the Xylella pan-genome have no ortholog or close paralog in the order Xanthomonadales. For a significant part of the genes, the closest homologue was found in bacteria belonging to distantly related taxonomic groups, most frequently in the Betaproteobacteria. Other species, such as Xanthomonas vasicola and Xanthomonas albilineans which were investigated for comparison, did not show a similar genetic contribution from distant branches of the prokaryotic tree of life. This finding indicates that the process of acquisition of DNA from the environment is still a relevant component of Xylella fastidiosa evolution. Although the ability of Xylella fastidiosa strains to recombine among themselves is well known, the results of the pan-genome analyses stressed the additional relevance of environmental DNA in shaping their genomes, with potential consequences on their phytopathological features.

5.
Sci Rep ; 10(1): 14770, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901060

RESUMO

The proteins AtSEOR1 and AtSEOR2 occur as conjugates in the form of filaments in sieve elements of Arabidopsis thaliana. A reduced phytoplasma titre found in infected defective-mutant Atseor1ko plants in previous work raised the speculation that non-conjugated SEOR2 is involved in the phytohormone-mediated suppression of Chrysanthemum Yellows (CY)-phytoplasma infection transmitted by Euscelidius variegatus (Ev). This early and long-lasting SEOR2 impact was revealed in Atseor1ko plants by the lack of detectable phytoplasmas at an early stage of infection (symptomless plants) and a lower phytoplasma titre at a later stage (fully symptomatic plants). The high insect survival rate on Atseor1ko line and the proof of phytoplasma infection at the end of the acquisition access period confirmed the high transmission efficiency of CY-phytoplasma by the vectors. Transmission electron microscopy analysis ruled out a direct role of SE filament proteins in physical phytoplasma containment. Time-correlated HPLC-MS/MS-based phytohormone analyses revealed increased jasmonate levels in midribs of Atseor1ko plants at an early stage of infection and appreciably enhanced levels of indole acetic acid and abscisic acid at the early and late stages. Effects of Ev-probing on phytohormone levels was not found. The results suggest that SEOR2 interferes with phytohormonal pathways in Arabidopsis midrib tissues in order to establish early defensive responses to phytoplasma infection.


Assuntos
Arabidopsis/microbiologia , Hemípteros/fisiologia , Interações Hospedeiro-Patógeno , Insetos Vetores/microbiologia , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Animais , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/análise
6.
Front Plant Sci ; 11: 226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194603

RESUMO

Despite the increasing spread of Grapevine Leaf Mottling and Deformation (GLMD) worldwide, little is known about its etiology. After identification of grapevine Pinot gris virus (GPGV) as the presumptive causal agent of the disease in 2015, various publications have evaluated GPGV involvement in GLMD. Nevertheless, there are only partial clues to explain the presence of GPGV in both symptomatic and asymptomatic grapevines and the mechanisms that trigger symptom development, and so a consideration of new factors is required. Given the similarities between GLMD and boron (B)-deficiency symptoms in grapevine plants, we posited that GPGV interferes in B homeostasis. By using a hydroponic system to control B availability, we investigated the effects of different B supplies on grapevine phenotype and those of GPGV infection on B acquisition and translocation machinery, by means of microscopy, ionomic and gene expression analyses in both roots and leaves. The transcription of the genes regulating B homeostasis was unaffected by the presence of GPGV alone, but was severely altered in plants exposed to both GPGV infection and B-deficiency, allowing us to speculate that the capricious and patchy occurrence of GLMD symptoms in the field may not be related solely to GPGV, but to GPGV interference in plant responses to different B availabilities. This hypothesis found preliminary positive confirmations in analyses on field-grown plants.

7.
BMC Genomics ; 20(1): 703, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31500568

RESUMO

BACKGROUND: 'Candidatus Phytoplasma solani' is endemic in Europe and infects a wide range of weeds and cultivated plants. Phytoplasmas are prokaryotic plant pathogens that colonize the sieve elements of their host plant, causing severe alterations in phloem function and impairment of assimilate translocation. Typical symptoms of infected plants include yellowing of leaves or shoots, leaf curling, and general stunting, but the molecular mechanisms underlying most of the reported changes remain largely enigmatic. To infer a possible involvement of Fe in the host-phytoplasma interaction, we investigated the effects of 'Candidatus Phytoplasma solani' infection on tomato plants (Solanum lycopersicum cv. Micro-Tom) grown under different Fe regimes. RESULTS: Both phytoplasma infection and Fe starvation led to the development of chlorotic leaves and altered thylakoid organization. In infected plants, Fe accumulated in phloem tissue, altering the local distribution of Fe. In infected plants, Fe starvation had additive effects on chlorophyll content and leaf chlorosis, suggesting that the two conditions affected the phenotypic readout via separate routes. To gain insights into the transcriptional response to phytoplasma infection, or Fe deficiency, transcriptome profiling was performed on midrib-enriched leaves. RNA-seq analysis revealed that both stress conditions altered the expression of a large (> 800) subset of common genes involved in photosynthetic light reactions, porphyrin / chlorophyll metabolism, and in flowering control. In Fe-deficient plants, phytoplasma infection perturbed the Fe deficiency response in roots, possibly by interference with the synthesis or transport of a promotive signal transmitted from the leaves to the roots. CONCLUSIONS: 'Candidatus Phytoplasma solani' infection changes the Fe distribution in tomato leaves, affects the photosynthetic machinery and perturbs the orchestration of root-mediated transport processes by compromising shoot-to-root communication.


Assuntos
Acholeplasmataceae/fisiologia , Ferro/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Transporte Biológico , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Fotossíntese/genética , Doenças das Plantas/genética , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia
8.
PLoS One ; 14(3): e0214010, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30889228

RESUMO

The Grapevine Pinot Gris disease (GPG-d) is a novel disease characterized by symptoms such as leaf mottling and deformation, which has been recently reported in grapevines, and mostly in Pinot gris. Plants show obvious symptoms at the beginning of the growing season, while during summer symptom recovery frequently occurs, manifesting as symptomless leaves. A new Trichovirus, named Grapevine Pinot gris virus (GPGV), which belongs to the family Betaflexiviridae was found in association with infected plants. The detection of the virus in asymptomatic grapevines raised doubts about disease aetiology. Therefore, the primary target of this work was to set up a reliable system for the study of the disease in controlled conditions, avoiding interfering factor(s) that could affect symptom development. To this end, two clones of the virus, pRI::GPGV-vir and pRI::GPGV-lat, were generated from total RNA collected from one symptomatic and one asymptomatic Pinot gris grapevine, respectively. The clones, which encompassed the entire genome of the virus, were used in Agrobacterium-mediated inoculation of Vitis vinifera and Nicotiana benthamiana plants. All inoculated plants developed symptoms regardless of their inoculum source, demonstrating a correlation between the presence of GPGV and symptomatic manifestations. Four months post inoculum, the grapevines inoculated with the pRI::GPGV-lat clone developed asymptomatic leaves that were still positive to GPGV detection. Three to four weeks later (i.e. ca. 5 months post inoculum), the same phenomenon was observed in the grapevines inoculated with pRI::GPGV-vir. This observation perfectly matches symptom progression in infected field-grown grapevines, suggesting a possible role for plant antiviral mechanisms, such as RNA silencing, in the recovery process.


Assuntos
Flexiviridae/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , Vitis/virologia , Agrobacterium/virologia , DNA Viral/genética , Flexiviridae/genética , Flexiviridae/ultraestrutura , Genoma Viral , Microscopia Eletrônica de Transmissão , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Nicotiana/ultraestrutura , Virulência , Vitis/ultraestrutura
9.
Protoplasma ; 255(3): 923-935, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29273825

RESUMO

Despite the increasing impact of Grapevine Pinot gris disease (GPG-disease) worldwide, etiology about this disorder is still uncertain. The presence of the putative causal agent, the Grapevine Pinot Gris Virus (GPGV), has been reported in symptomatic grapevines (presenting stunting, chlorotic mottling, and leaf deformation) as well as in symptom-free plants. Moreover, information on virus localization in grapevine tissues and virus-plant interactions at the cytological level is missing at all. Ultrastructural and cytochemical investigations were undertaken to detect virus particles and the associated cytopathic effects in field-grown grapevine showing different symptom severity. Asymptomatic greenhouse-grown grapevines, which tested negative for GPGV by real time RT-PCR, were sampled as controls. Multiplex real-time RT-PCR and ELISA tests excluded the presence of viruses included in the Italian certification program both in field-grown and greenhouse-grown grapevines. Conversely, evidence was found for ubiquitous presence of Grapevine Rupestris Stem Pitting-associated Virus (GRSPaV), Hop Stunt Viroid (HSVd), and Grapevine Yellow Speckle Viroid 1 (GYSVd-1) in both plant groups. Moreover, in every field-grown grapevine, GPGV was detected by real-time RT-PCR. Ultrastructural observations and immunogold labelling assays showed filamentous flexuous viruses in the bundle sheath cells, often located inside membrane-bound organelles. No cytological differences were observed among field-grown grapevine samples showing different symptom severity. GPGV localization and associated ultrastructural modifications are reported and discussed, in the perspective of assisting management and control of the disease.


Assuntos
Flexiviridae/fisiologia , Folhas de Planta/virologia , Vitis/virologia , Flexiviridae/ultraestrutura , Doenças das Plantas/virologia , Folhas de Planta/ultraestrutura , Frações Subcelulares/metabolismo , Vitis/ultraestrutura
10.
J Exp Bot ; 68(13): 3673-3688, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28859375

RESUMO

In Fabaceae, dispersion of forisomes-highly ordered aggregates of sieve element proteins-in response to phytoplasma infection was proposed to limit phloem mass flow and, hence, prevent pathogen spread. In this study, the involvement of filamentous sieve element proteins in the containment of phytoplasmas was investigated in non-Fabaceae plants. Healthy and infected Arabidopsis plants lacking one or two genes related to sieve element filament formation-AtSEOR1 (At3g01680), AtSEOR2 (At3g01670), and AtPP2-A1 (At4g19840)-were analysed. TEM images revealed that phytoplasma infection induces phloem protein filament formation in both the wild-type and mutant lines. This result suggests that, in contrast to previous hypotheses, sieve element filaments can be produced independently of AtSEOR1 and AtSEOR2 genes. Filament presence was accompanied by a compensatory overexpression of sieve element protein genes in infected mutant lines in comparison with wild-type lines. No correlation was found between phloem mass flow limitation and phytoplasma titre, which suggests that sieve element proteins are involved in defence mechanisms other than mechanical limitation of the pathogen.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/imunologia , Floema/metabolismo , Phytoplasma/fisiologia , Doenças das Plantas/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Doenças das Plantas/microbiologia
11.
Micron ; 89: 87-97, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27569416

RESUMO

Phytoplasmas are phloem-inhabiting plant pathogens that affect over one thousand plant species, representing a severe threat to agriculture. The absence of an effective curative strategy and the economic importance of many affected crops make a priority of studying how plants respond to phytoplasma infection. Nevertheless, the study of phytoplasmas has been hindered by the extreme difficulty of culturing them in vitro and by impediments to natural host plant surveys such as low phytoplasma titre, long plant life cycle and poor knowledge of natural host-plant biology. Stating correspondence between macroscopic symptoms of phytoplasma infected Arabidopsis thaliana and those observed in natural host plants, over the last decade some authors have started to use this plant as a model for studying phytoplasma-plant interactions. Nevertheless, the morphological and ultrastructural modifications occurring in A. thaliana tissues following phytoplasma infection have never been described in detail. In this work, we adopted a combined-microscopy approach to verify if A. thaliana can be considered a reliable model for the study of phytoplasma-plant interactions at the microscopical level. The consistent presence of phytoplasma in infected phloem allowed detailed study of the infection process and the relationship established by phytoplasmas with different components of the sieve elements. In infected A. thaliana, phytoplasmas induced strong disturbances of host plant development that were mainly due to phloem disorganization and impairment. Light microscopy showed collapse, necrosis and hyperplasia of phloem cells. TEM observations of sieve elements identified two common plant-responses to phytoplasma infection: phloem protein agglutination and callose deposition.


Assuntos
Arabidopsis/microbiologia , Microscopia/métodos , Phytoplasma/ultraestrutura , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura
12.
Plant Signal Behav ; 11(2): e1138191, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26795235

RESUMO

Phytoplasmas are among the most recently discovered plant pathogenic microorganisms so, many traits of the interactions with host plants and insect vectors are still unclear and need to be investigated. At now, it is impossible to determine the precise sequences leading to the onset of the relationship with the plant host cell. It is still unclear how phytoplasmas, located in the phloem sieve elements, exploit host cell to draw nutrition for their metabolism, growth and multiplication. In this work, basing on microscopical observations, we give insight about the structural interactions established by phytoplasmas and the sieve element plasma membrane, cytoskeleton, sieve endoplasmic reticulum, speculating about a possible functional role.


Assuntos
Interações Hospedeiro-Patógeno , Phytoplasma/fisiologia , Solanum lycopersicum/microbiologia , Animais , Aderência Bacteriana , Membrana Celular/microbiologia , Insetos Vetores/microbiologia , Solanum lycopersicum/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Phytoplasma/ultraestrutura , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...