Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Geroscience ; 42(4): 1021-1049, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430627

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells following binding with the cell surface ACE2 receptors, thereby leading to coronavirus disease 2019 (COVID-19). SARS-CoV-2 causes viral pneumonia with additional extrapulmonary manifestations and major complications, including acute myocardial injury, arrhythmia, and shock mainly in elderly patients. Furthermore, patients with existing cardiovascular comorbidities, such as hypertension and coronary heart disease, have a worse clinical outcome following contraction of the viral illness. A striking feature of COVID-19 pandemics is the high incidence of fatalities in advanced aged patients: this might be due to the prevalence of frailty and cardiovascular disease increase with age due to endothelial dysfunction and loss of endogenous cardioprotective mechanisms. Although experimental evidence on this topic is still at its infancy, the aim of this position paper is to hypothesize and discuss more suggestive cellular and molecular mechanisms whereby SARS-CoV-2 may lead to detrimental consequences to the cardiovascular system. We will focus on aging, cytokine storm, NLRP3/inflammasome, hypoxemia, and air pollution, which is an emerging cardiovascular risk factor associated with rapid urbanization and globalization. We will finally discuss the impact of clinically available CV drugs on the clinical course of COVID-19 patients. Understanding the role played by SARS-CoV2 on the CV system is indeed mandatory to get further insights into COVID-19 pathogenesis and to design a therapeutic strategy of cardio-protection for frail patients.


Assuntos
Betacoronavirus , Doenças Cardiovasculares/virologia , Infecções por Coronavirus/complicações , Pneumonia Viral/complicações , Fatores Etários , Idoso , COVID-19 , Doenças Cardiovasculares/epidemiologia , Infecções por Coronavirus/epidemiologia , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/epidemiologia , Fatores de Risco , SARS-CoV-2
2.
Eur Rev Med Pharmacol Sci ; 23(2): 464-470, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30720152

RESUMO

During the 16th century and at the beginning of the 17th century the age-old competition between scholarly doctors and folk healers became more and more serious, creating a division between the two categories entrusted with treating population diseases. On one side there were the representatives who practiced medicine in an official capacity, and on the other, the "others", that is, the charlatans, the acrobats and female healers. Two representatives of these contrasting approaches of practicing medicine within the health profession during that historical period were two Italian doctors, Domenico Lanzoni and Giuseppe Rosaccio. Together, with their ties to the city of Bologna and the bolognese Carracci family of painters, they were able to describe in complete detail these two types of practices as medical sciences of the sixteenth and early seventeenth century.


Assuntos
Medicina , Médicos/história , História do Século XVI , História do Século XVII , Humanos , Itália
3.
Acta Physiol (Oxf) ; 222(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28748611

RESUMO

AIM: Apelin, the ligand of the G-protein-coupled receptor (GPCR) APJ, exerts a post-conditioning-like protection against ischaemia/reperfusion injury through activation of PI3K-Akt-NO signalling. The pathway connecting APJ to PI3K is still unknown. As other GPCR ligands act through transactivation of epidermal growth factor receptor (EGFR) via a matrix metalloproteinase (MMP) or Src kinase, we investigated whether EGFR transactivation is involved in the following three features of apelin-induced cardioprotection: limitation of infarct size, suppression of contracture and improvement of post-ischaemic contractile recovery. METHOD: Isolated rat hearts underwent 30 min of global ischaemia and 2 h of reperfusion. Apelin (0.5 µm) was infused during the first 20 min of reperfusion. EGFR, MMP or Src was inhibited to study the pathway connecting APJ to PI3K. Key components of RISK pathway, namely PI3K, guanylyl cyclase or mitochondrial K+ -ATP channels, were also inhibited. Apelin-induced EGFR and phosphatase and tensing homolog (PTEN) phosphorylation were assessed. Left ventricular pressure and infarct size were measured. RESULTS: Apelin-induced reductions in infarct size and myocardial contracture were prevented by the inhibition of EGFR, Src, MMP or RISK pathway. The involvement of EGFR was confirmed by its phosphorylation. However, neither direct EGFR nor MMP inhibition affected apelin-induced improvement of early post-ischaemic contractile recovery, which was suppressed by Src and RISK inhibitors only. Apelin also increased PTEN phosphorylation, which was removed by Src inhibition. CONCLUSION: While EGFR and MMP limit infarct size and contracture, Src or RISK pathway inhibition suppresses the three features of cardioprotection. Src does not only transactivate EGFR, but also inhibits PTEN by phosphorylation thus playing a crucial role in apelin-induced cardioprotection.


Assuntos
Apelina/farmacologia , Cardiotônicos/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Quinases da Família src/metabolismo , Animais , Masculino , Traumatismo por Reperfusão Miocárdica/fisiopatologia , PTEN Fosfo-Hidrolase/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ativação Transcricional/efeitos dos fármacos
4.
Int J Pharm ; 523(2): 506-514, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27887883

RESUMO

Catestatin (CST), a fragment of Chromogranin-A, exerts angiogenic, arteriogenic, vasculogenic and cardioprotective effects. CST is a very promising agent for revascularization purposes, in "NOOPTION" patients. However, peptides have a very short half-life after administration and must be conveniently protected. Fibronectin-coated pharmacologically active microcarriers (FN-PAM), are biodegradable and biocompatible polymeric microspheres that can convey mesenchymal stem cell (MSCs) and therapeutic proteins delivered in a prolonged manner. In this study, we first evaluated whether a small peptide such as CST could be nanoprecipitated and incorporated within FN-PAMs. Subsequently, whether CST may be released in a prolonged manner by functionalized FN-PAMs (FN-PAM-CST). Finally, we assessed the effect of CST released by FN-PAM-CST on the survival of MSCs under stress conditions of hypoxia-reoxygenation. An experimental design, modifying three key parameters (ionic strength, mixing and centrifugation time) of protein nanoprecipitation, was used to define the optimum condition for CST. An optimal nanoprecipitation yield of 76% was obtained allowing encapsulation of solid CST within FN-PAM-CST, which released CST in a prolonged manner. In vitro, MSCs adhered to FN-PAMs, and the controlled release of CST from FN-PAM-CST greatly limited hypoxic MSC-death and enhanced MSC-survival in post-hypoxic environment. These results suggest that FN-PAM-CST are promising tools for cell-therapy.


Assuntos
Cromogranina A/farmacologia , Portadores de Fármacos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Materiais Biocompatíveis/química , Diferenciação Celular , Humanos
5.
Br J Pharmacol ; 172(8): 1974-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25303224

RESUMO

The morbidity and mortality from coronary artery disease (CAD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of culprit coronary arteries. Although it is mandatory to reperfuse the ischaemic territory as soon as possible, paradoxically this leads to additional myocardial injury, namely ischaemia/reperfusion (I/R) injury, in which redox stress plays a pivotal role and for which no effective therapy is currently available. In this review, we report evidence that the redox environment plays a pivotal role not only in I/R injury but also in cardioprotection. In fact, cardioprotective strategies, such as pre- and post-conditioning, result in a robust reduction in infarct size in animals and the role of redox signalling is of paramount importance in these conditioning strategies. Nitrosative signalling and cysteine redox modifications, such as S-nitrosation/S-nitrosylation, are also emerging as very important mechanisms in conditioning cardioprotection. The reasons for the switch from protective oxidative/nitrosative signalling to deleterious oxidative/nitrosative/nitrative stress are not fully understood. The complex regulation of this switch is, at least in part, responsible for the diminished or lack of cardioprotection induced by conditioning protocols observed in ageing animals and with co-morbidities as well as in humans. Therefore, it is important to understand at a mechanistic level the reasons for these differences before proposing a safe and useful transition of ischaemic or pharmacological conditioning. Indeed, more mechanistic novel therapeutic strategies are required to protect the heart from I/R injury and to improve clinical outcomes in patients with CAD.


Assuntos
Traumatismo por Reperfusão Miocárdica/prevenção & controle , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Oxirredução
6.
Leukemia ; 28(6): 1196-206, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24310736

RESUMO

Constitutively active phosphoinositide 3-kinase (PI3K) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it upregulates cell proliferation, survival and drug resistance. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of the pan-PI3K inhibitor NVP-BKM120 (BKM120), an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in G2/M phase cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T lymphoblasts, and promoting a dose- and time-dependent dephosphorylation of Akt and S6RP. BKM120 maintained its pro-apoptotic activity against Jurkat cells even when cocultured with MS-5 stromal cells, which mimic the bone marrow microenvironment. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. Moreover, in vivo administration of BKM120 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth, thus prolonging survival time. Taken together, our findings indicate that BKM120, either alone or in combination with chemotherapeutic drugs, may be an efficient treatment for T-ALLs that have aberrant upregulation of the PI3K signaling pathway.


Assuntos
Aminopiridinas/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Animais , Western Blotting , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Leukemia ; 28(4): 739-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23892718

RESUMO

B-precursor acute lymphoblastic leukemia (B-pre ALL) is a malignant disorder characterized by the abnormal proliferation of B-cell progenitors. The prognosis of B-pre ALL has improved in pediatric patients, but the outcome is much less successful in adults. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K), Akt and the mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) network is a feature of B-pre ALL, where it strongly influences cell growth and survival. RAD001, a selective mTORC1 inhibitor, has been shown to be cytotoxic against many types of cancer including hematological malignancies. To investigate whether mTORC1 could represent a target in the therapy of B-pre ALL, we treated cell lines and adult patient primary cells with RAD001. We documented that RAD001 decreased cell viability, induced cell cycle arrest in G0/G1 phase and caused apoptosis in B-pre ALL cell lines. Autophagy was also induced, which was important for the RAD001 cytotoxic effect, as downregulation of Beclin-1 reduced drug cytotoxicity. RAD001 strongly synergized with the novel allosteric Akt inhibitor MK-2206 in both cell lines and patient samples. Similar results were obtained with the combination CCI-779 plus GSK 690693. These findings point out that mTORC1 inhibitors, either as a single agent or in combination with Akt inhibitors, could represent a potential therapeutic innovative strategy in B-pre ALL.


Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Everolimo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Oxidiazóis/farmacologia , Sirolimo/análogos & derivados , Sirolimo/farmacologia
8.
Basic Res Cardiol ; 108(5): 371, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872876

RESUMO

Postconditioning (PostC) can be obtained either with brief cycles of ischemia/reperfusion (I-PostC) or with a direct targeting of mitochondria with Diazoxide (pharmacological PostC, P-PostC). I-PostC may induce the activation of RISK and SAFE pathways and may favor nitric oxide production with S-Nitrosylation of proteins and redox signaling. It is not clear whether Diazoxide can lead to similar effects. We compared the effects of I-PostC and P-PostC on (a) kinases of RISK- and SAFE pathway, (b) S-Nitrosylation of mitochondrial proteins and (c) reduction of death signals (PKCδ, cleaved caspase-3 and Beclin-1) in cytosolic and mitochondrial fractions. Isolated rat hearts underwent (1) perfusion without ischemia (Sham), (2) ischemia/reperfusion (30-min ischemia plus 2-h reperfusion), (3) I-PostC (5 intermittent cycles of 10-s reperfusion and 10-s ischemia immediately after the 30-min ischemia), (4) P-PostC (Diazoxide 30 µM in the first of 3-min of reperfusion) or (5) I-PostC + MPG or P-PostC + MPG (MPG, 2-mercaptopropionylglycine 300 µM). Using Western blot and biotin switch assay, we found that P-PostC induced a redox sensible phosphorylation/translocation of Akt, ERK1/2 and GSK3ß into the mitochondria, but not of phospho-STAT3, which was translocated into the mitochondria by I-PostC only. Either I-PostC or P-PostC increased mitochondrial S-Nitrosylated proteins (e.g., VDAC) and reduced the levels of phospho-PKCδ, cleaved caspase-3 and Beclin-1. Therefore, direct targeting of mitochondria with Diazoxide (a) activates the RISK pathway via a redox signaling, (b) favors discrete mitochondrial protein S-Nitrosylation, including VDAC and (c) decreases signals of death. Intriguingly, phospho-STAT3 translocation is induced by I-PostC, but not by P-PostC, thus suggesting a redox-independent mechanism in the SAFE pathway.


Assuntos
Diazóxido/farmacologia , Coração/efeitos dos fármacos , Pós-Condicionamento Isquêmico/métodos , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Western Blotting , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Técnicas de Cultura de Órgãos , Oxirredução/efeitos dos fármacos , Fosforilação , Proteínas Quinases/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
9.
Vox Sang ; 105(2): 116-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23600766

RESUMO

BACKGROUND AND OBJECTIVES: The haemoglobin level of prospective blood donors is usually performed on blood obtained by from the finger pulp by fingerstick with a lancet and filling a capillary tube with a sample. New noninvasive methods are now available for rapid, noninvasive predonation haemoglobin screening. MATERIALS AND METHODS: Prospective blood donors at our blood centre were tested, in two different trials, as follows: by the NBM 200 (OrSense) test (n = 445 donors) and by the Pronto-7 (Masimo) test (n = 463 donors). The haemoglobin values of each trial and the haemoglobin of finger pulp blood obtained by fingerstick with a lancet (HemoCue) were compared with the haemoglobin values obtained from a venous sample on a Cell Counter (Beckman Coulter). RESULTS: Comparison of Beckman Coulter Cell Counter and OrSense and results showed a bias of 0.29 g/dl, the standard deviation of the differences (SDD) of 0.98 and 95% limits of agreement from -1.64 to 2.21, using Bland and Altman statistical methodology. Comparison of Masimo and Beckman Coulter Cell Counter results showed a bias of -0.53 g/dl, SDD of 1.04 and 95% limits of agreement from -2.57 to 1.51. Cumulative analysis of all 908 donors, as tested by the usual fingerstick test showed a bias of 0.83 g/dl, SDD of 0.70 and 95% limits of agreement from -0.54 to 2.20 compared with the Coulter Cell Counter. Compared with the Coulter Counter, the specificity of the methods was 99.5% for fingerstick, 97% for OrSense and 83% for Massimo, and the sensitivity was 99, 98 and 93%, respectively. CONCLUSIONS: Analysis of finger pulp blood by either direct sampling by fingerstick and Hemocue, or by noninvasive haemoglobin tests does not replicate the results of cell counter analysis of venous samples. Compared with fingerstick, noninvasive haemoglobin tests eliminate pain and reduce stress, but have a lower level of specificity and sensitivity.


Assuntos
Análise Química do Sangue/instrumentação , Análise Química do Sangue/métodos , Doadores de Sangue , Hemoglobinas/metabolismo , Feminino , Hemoglobinas/análise , Humanos , Masculino , Estudos Prospectivos
10.
Curr Med Chem ; 19(24): 4074-85, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22834798

RESUMO

Chromogranin A (CgA) is produced by cells of the sympathoadrenal system and by human ventricular myocardium. In the clinical setting CgA has been mainly used as a marker of neuroendocrine tumors, but in the last decade a plenty of data have been published on the role of CgA and its derived peptides, particularly catestatin and vasostatin, in the regulation of cardiovascular function and diseases, including heart failure and hypertension. CgA-derived peptides, namely catestatin and vasostatin, may exert negative inotropic and lusitropic effects on mammalian hearts. As such CgA and its derived peptides may be regarded as mediators of a complex feedback system able to modulate the exaggerated release of catecholamines. This system may be also interpreted as an attempt for compensatory cardioprotective response against myocardial injury in the pre and postischemic scenarios. In fact, while vasostatin can trigger cardioprotective effects akin ischemic preconditioning (protection is triggered before ischemia), catestatin is a potent cardioprotective agent in the early post-ischemic phase, acting like a postconditioning agent (protection is triggered at the onset of reperfusion). Admittedly, the exact mechanism of cardioprotection of this system is far from being fully understood. Interestingly, both vasostatin and catestatin have shown to be able to activate multiple cardioprotective pathways. In particular, these two CgA-derived peptides may induce nitric oxide dependent pathway, which may play a pivotal role in cardioprotection against ischemia/reperfusion injury. Here, we review the literature about the cardiac effects of catestatin and vasostatin, the mechanisms of myocardial injury and protection and the role of CgA derived peptides in cardioprotection.


Assuntos
Calreticulina/metabolismo , Cardiotônicos/metabolismo , Cromogranina A/metabolismo , Fragmentos de Peptídeos/metabolismo , Traumatismo por Reperfusão/metabolismo , Calreticulina/farmacologia , Cardiotônicos/farmacologia , Cromogranina A/farmacologia , Coração/efeitos dos fármacos , Humanos , Precondicionamento Isquêmico , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
11.
Leukemia ; 26(11): 2336-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22614243

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder arising from T-cell progenitors. T-ALL accounts for 15% of newly diagnosed ALL cases in children and 25% in adults. Although the prognosis of T-ALL has improved, due to the use of polychemotherapy schemes, the outcome of relapsed/chemoresistant T-ALL cases is still poor. A signaling pathway that is frequently upregulated in T-ALL, is the phosphatidylinositol 3-kinase/Akt/mTOR network. To explore whether Akt could represent a target for therapeutic intervention in T-ALL, we evaluated the effects of the novel allosteric Akt inhibitor, MK-2206, on a panel of human T-ALL cell lines and primary cells from T-ALL patients. MK-2206 decreased T-ALL cell line viability by blocking leukemic cells in the G(0)/G(1) phase of the cell cycle and inducing apoptosis. MK-2206 also induced autophagy, as demonstrated by an increase in the 14-kDa form of LC3A/B. Western blotting analysis documented a concentration-dependent dephosphorylation of Akt and its downstream targets, GSK-3α/ß and FOXO3A, in response to MK-2206. MK-2206 was cytotoxic to primary T-ALL cells and induced apoptosis in a T-ALL patient cell subset (CD34(+)/CD4(-)/CD7(-)), which is enriched in leukemia-initiating cells. Taken together, our findings indicate that Akt inhibition may represent a potential therapeutic strategy in T-ALL.


Assuntos
Compostos Heterocíclicos com 3 Anéis/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Humanos , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Transdução de Sinais
12.
Bone Marrow Transplant ; 47(8): 1105-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22101198

RESUMO

Several studies have shown that chronic GVHD (cGVHD) is more frequent in patients receiving transplants from PBSC than in those receiving BM. In the setting of PBSC-unrelated transplants, the addition of anti-T-cell globulin (ATG) has shown a significant decrease in incidence/severity of cGVHD, without an increase in relapses or infections. However, no prospective data are yet available in the sibling setting. We retrospectively analyzed the effects of intensification of standard GVHD prophylaxis (CsA+MTX) by the addition of low-dose ATG in 245 patients receiving a transplant from HLA-identical sibling. From 1996 to 2001, patients received PBSC as the preferred source (group 2), and then ATG was added before transplant (group 3) because of a high cGVHD rate. Patients receiving BM in the same time period were analyzed as a control group (group 1). The incidence of grade III-IV acute GVHD and cGVHD was not significantly different in the three groups, but extensive cGVHD was highest in group 2 (38%) compared with group 3 (21%) or group 1 (28%; P=0.03). OS, TRM and time to relapse/progression were similar in the three groups. Our analysis shows that adding ATG to PBSC sibling allogeneic transplants can lower cGVHD, without an increase of relapse. Further prospective studies are needed to confirm these findings.


Assuntos
Soro Antilinfocitário/administração & dosagem , Doença Enxerto-Hospedeiro/prevenção & controle , Neoplasias Hematológicas/terapia , Imunossupressores/administração & dosagem , Transplante de Células-Tronco de Sangue Periférico , Irmãos , Doença Aguda , Adolescente , Adulto , Idoso , Doença Crônica , Feminino , Doença Enxerto-Hospedeiro/etiologia , Teste de Histocompatibilidade , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Transplante Homólogo
13.
Leukemia ; 26(1): 91-100, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21968881

RESUMO

The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be downmodulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4(+) T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34(+)/CD7(-)/CD4(-)) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL.


Assuntos
Adenilato Quinase/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Citometria de Fluxo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Metformina/farmacologia , Complexos Multiproteicos , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR
14.
Leukemia ; 25(5): 781-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21331075

RESUMO

The mammalian Target Of Rapamycin (mTOR) serine/threonine kinase belongs to two multi-protein complexes, referred to as mTORC1 and mTORC2. mTOR-generated signals have critical roles in leukemic cell biology by controlling mRNA translation of genes that promote proliferation and survival. However, allosteric inhibition of mTORC1 by rapamycin has only modest effects in T-cell acute lymphoblastic leukemia (T-ALL). Recently, ATP-competitive inhibitors specific for the mTOR kinase active site have been developed. In this study, we have explored the therapeutic potential of active-site mTOR inhibitors against both T-ALL cell lines and primary samples from T-ALL patients displaying activation of mTORC1 and mTORC2. The inhibitors affected T-ALL cell viability by inducing cell-cycle arrest in G(0)/G(1) phase, apoptosis and autophagy. Western blot analysis demonstrated a Ser 473 Akt dephosphorylation (indicative of mTORC2 inhibition) and a dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cell lines treated with active-site mTOR inhibitors. The inhibitors strongly synergized with both vincristine and the Bcl-2 inhibitor, ABT-263. Remarkably, the drugs targeted a putative leukemia-initiating cell sub-population (CD34(+)/CD7(-)/CD4(-)) in patient samples. In conclusion, the inhibitors displayed remarkable anti-leukemic activity, which emphasizes their future development as clinical candidates for therapy in T-ALL.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Western Blotting , Domínio Catalítico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imunossupressores/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-21285922

RESUMO

Ahead of Print article withdrawn by publisher.

16.
Basic Res Cardiol ; 106(3): 409-20, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21174210

RESUMO

We hypothesized that nandrolone (ND)-abuse induces cardiac hypertrophy, increases myocardial susceptibility to ischemia/reperfusion (I/R) injury, and reduces responsiveness to postconditioning (PostC) cardioprotection. Wistar-rats were ND treated for 2 weeks (short_ND) or 10 weeks (long_ND). Vehicle-treated rats served as controls. Hearts were retrogradely perfused and left ventricular pressure (LVP) was measured before and after 30-min global ischemia. In subgroups of hearts, to induce cardioprotection a PostC protocol (five cycles of 10-s reperfusion and 10-s ischemia) was performed. ß-adrenoreceptors, kinases (Akt and GSK-3ß) and phosphatases (PP2A sub A and PP2A sub B) were examined by Western blot before and after ischemia. After 120-min reperfusion, infarct size was measured. Short_ND slightly increased cardiac/body weight ratio, but did not affect cardiac baseline nor post-ischemic contractile function or infarct size when compared to vehicle hearts. However, PostC limited cardiac dysfunction much more in short_ND hearts than the other groups. Although cardiac/body weight ratio markedly increased after long_ND, baseline LVP was not affected. Yet, post-ischemic contracture and infarct size were exacerbated and PostC was unable to reduce infarct size and ventricular dysfunction. While short_ND increased phosphatases, non-phosphorylated and phosphorylated Akt, long_ND reduced phosphatase-expression and Akt phosphorylation. Both short_ND and long_ND had no effect on the GSK-3ß-phosphorylation but increased the expression of ß(2)-adrenoreceptors. In reperfusion, PostC increased Akt phosphorylation regardless of protective effects, but reduced phosphatase-expression in protected hearts only. In conclusion, short_ND improves post-ischemic myocardial performance in postconditioned hearts. However, long_ND increases myocardial susceptibility to I/R injury and abolishes cardioprotection by PostC. This increased susceptibility might be related to steroid-induced hypertrophy and/or to altered enzyme expression/phosphorylation.


Assuntos
Anabolizantes/toxicidade , Cardiomegalia/induzido quimicamente , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/metabolismo , Nandrolona/toxicidade , Animais , Western Blotting , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ratos , Ratos Wistar
17.
Eur Cell Mater ; 20: 13-23, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20597062

RESUMO

Platelet-rich plasma (PRP) is used clinically in liquid or gel form to promote tissue repair. Because of the poor mechanical properties, conventional PRP is often difficult to handle when used in clinical settings and requires secure implantation in a specific site, otherwise when released growth factors could be washed out during an operation. In this study, we analyzed the end product of a recently developed commercially available system (FIBRINET), which is a dense pliable, platelet-rich fibrin matrix (PRFM). We characterized the mechanical properties of PRFM and tested whether PRFM releases growth factors and whether released factors induce the proliferation of mesenchymal stem cells (MSC). Mechanical properties as well as platelet distribution were evaluated in PRFM. PRFM demonstrated robust mechanical properties, with a tear elastic modulus of 937.3 +/- 314.6 kPa, stress at a break of 1476.0 +/- 526.3 kPa, and an elongation at break of 146.3 +/- 33.8 %. PRFM maintained its mechanical properties throughout the testing process. Microscopic observations showed that the platelets were localized on one side of the matrix. Elevated levels of PDGF-AA, PDGF-AB, EGF, VEGF, bFGF and TGF-beta1 were measured in the day 1-conditioned media (CM) of PRFM and growth factor levels decreased thereafter. BMP2 and BMP7 were not detectable. MSC culture media supplemented with 20% PRFM-CM stimulated MSC cell proliferation; at 24 and 48 hours the induction of the proliferation was significantly greater than the induction obtained with media supplemented with 20% foetal bovine serum. The present study shows that the production of a dense, physically robust PRFM made through high-speed centrifugation of intact platelets and fibrin in the absence of exogenous thrombin yields a potential tool for accelerating tissue repair.


Assuntos
Fibrina/metabolismo , Plasma Rico em Plaquetas/metabolismo , Proliferação de Células , Meios de Cultivo Condicionados , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fator de Crescimento Derivado de Plaquetas/metabolismo , Plasma Rico em Plaquetas/citologia
18.
J Physiol Pharmacol ; 61(1): 21-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20228411

RESUMO

Nitric oxide (NO) and reactive oxygen species (ROS) are double-edged swords in reperfused hearts. The effects of a NO-donor and an antioxidant compound against ischemia/reperfusion were studied. The compounds were tested separately, as a mixture and as a new hybrid molecule containing both leads. Isolated rat hearts underwent 30 min global ischemia and 2 hrs reperfusion. Compounds were infused either at 1 or 10 microM concentrations during the first 20 min of reperfusion. Hybrid was also tested in the presence of mitochondrial K(+) ATP-sensitive (mKATP) channel blockade by 5-HD (100 microM). Reduction of infarct size and recovery of left ventricular developed pressure during reperfusion were evaluated. When given at 1 microM concentration, hybrid significantly improved all indices of protection; its beneficial effects were abolished by mKATP channel blockade. At the same concentration, mixture and NO-donor alone improved recovery of left ventricular developed pressure but did not reduce infarct size; antioxidant was ineffective. When given at 10 microM concentration, antioxidant and mixture improved all parameters of protection; NO-donor and hybrid were ineffective. Our data suggest that different signaling cascades could be elicited by low and high concentrations of antioxidant compound and/or NO-donor. It is likely that a different NO-induced release of reactive oxygen species via mKATP channel activation may play a pivotal role in affecting infarct size and post-ischemic contractile recovery.


Assuntos
Antioxidantes/metabolismo , Cardiotônicos/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Doadores de Óxido Nítrico/metabolismo , Animais , Antioxidantes/administração & dosagem , Cardiotônicos/administração & dosagem , Interações Medicamentosas/fisiologia , Quimioterapia Combinada , Lipídeos , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Doadores de Óxido Nítrico/administração & dosagem , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Solubilidade
19.
Leukemia ; 24(4): 687-98, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20200557

RESUMO

Alkylphospholipids and alkylphosphocholines (APCs) are promising antitumor agents, which target the plasma membrane and affect multiple signal transduction networks. We investigated the therapeutic potential of erucylphosphohomocholine (ErPC3), the first intravenously applicable APC, in human acute myelogenous leukemia (AML) cells. ErPC3 was tested on AML cell lines, as well as AML primary cells. At short (6-12 h) incubation times, the drug blocked cells in G2/M phase of the cell cycle, whereas, at longer incubation times, it decreased survival and induced cell death by apoptosis. ErPC3 caused JNK 1/2 activation as well as ERK 1/2 dephosphorylation. Pharmacological inhibition of caspase-3 or a JNK 1/2 inhibitor peptide markedly reduced ErPC3 cytotoxicity. Protein phosphatase 2A downregulation by siRNA opposed ERK 1/2 dephosphorylation and blunted the cytotoxic effect of ErPC3. ErPC3 was cytotoxic to AML primary cells and reduced the clonogenic activity of CD34(+) leukemic cells. ErPC3 induced a significant apoptosis in the compartment (CD34(+) CD38(Low/Neg) CD123(+)) enriched in putative leukemia-initiating cells. This conclusion was supported by ErPC3 cytotoxicity on AML blasts showing high aldehyde dehydrogenase activity and on the side population of AML cell lines and blasts. These findings indicate that ErPC3 might be a promising therapeutic agent for the treatment of AML patients.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Erúcicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , MAP Quinase Quinase 4/metabolismo , Fosforilcolina/análogos & derivados , Células Precursoras de Linfócitos B/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Animais , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilcolina/farmacologia , Células Precursoras de Linfócitos B/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
20.
Acta Physiol (Oxf) ; 197(3): 175-85, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19432589

RESUMO

AIM: Platelet-activating factor (PAF) triggers cardiac pre-conditioning against ischemia/reperfusion injury. The actual protection of ischaemic pre-conditioning occurs in the reperfusion phase. Therefore, we studied in this phase the kinases involved in PAF-induced pre-conditioning. METHODS: Langendorff-perfused rat hearts underwent 30 min of ischaemia and 2 h of reperfusion (group 1, control). Before ischaemia, group 2 hearts were perfused for 19 min with PAF (2 x 10(-11) M); groups 3-5 hearts were co-infused during the initial 20 min of reperfusion, with the protein kinase C (PKC) inhibitor chelerythrine (5 x 10(-6) M) or the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (5 x 10(-5) M) and atractyloside (2 x 10(-5) M), a mitochondrial permeability transition pore (mPTP) opener respectively. Phosphorylation of PKCepsilon, PKB/Akappat, GSK-3beta and ERK1/2 at the beginning of reperfusion was also checked. Left ventricular pressure and infarct size were determined. RESULTS: PAF pre-treatment reduced infarct size (33 +/- 4% vs. 64 +/- 5% of the area at risk of control hearts) and improved pressure recovery. PAF pre-treatment enhanced the phosphorylation/activation of PKCepsilon, PKB/Akappat and the phosphorylation/inactivation of GSK-3beta at reperfusion. Effects on ERK1/2 phosphorylation were not consistent. Infarct-sparing effect and post-ischaemic functional improvement induced by PAF pre-treatment were abolished by post-ischaemic infusion of either chelerythrine, LY294002 or atractyloside. CONCLUSIONS: The cardioprotective effect exerted by PAF pre-treatment involves activation of PKC and PI3K in post-ischaemic phases and might be mediated by the prevention of mPTP opening in reperfusion via GSK-3beta inactivation.


Assuntos
Traumatismo por Reperfusão Miocárdica/enzimologia , Fator de Ativação de Plaquetas/metabolismo , Proteínas Quinases/metabolismo , Animais , Western Blotting , Ativação Enzimática , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Precondicionamento Isquêmico Miocárdico , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/enzimologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...