Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(10): 7221-7228, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38419682

RESUMO

In this work, we propose an original and potentially scalable synthetic route for the fabrication of CuxO-gCN-TiO2-Au (x = 1,2) nanoarchitectures, based on Cu foam anodization, graphitic carbon nitride liquid-phase deposition, and TiO2/Au sputtering. A thorough chemico-physical characterization by complementary analytical tools revealed the formation of nanoarchitectures featuring an intimate contact between the system components and a high dispersion of gold nanoparticles. Modulation of single component interplay yielded excellent functional performances in photoactivated hydrogen evolution, corresponding to a photocurrent of ≈-5.7 mA cm-2 at 0.0 V vs. the reversible hydrogen electrode (RHE). These features, along with the very good service life, represent a cornerstone for the conversion of natural resources, as water and largely available sunlight, into added-value solar fuels.

2.
Small ; 19(46): e2304585, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37469201

RESUMO

High-entropy oxides (HEOs) have emerged as promising anode materials for next-generation lithium-ion batteries (LIBs). Among them, spinel HEOs with vacant lattice sites allowing for lithium insertion and diffusion seem particularly attractive. In this work, electrospun oxygen-deficient (Mn,Fe,Co,Ni,Zn) HEO nanofibers are produced under environmentally friendly calcination conditions and evaluated as anode active material in LIBs. A thorough investigation of the material properties and Li+ storage mechanism is carried out by several analytical techniques, including ex situ synchrotron X-ray absorption spectroscopy. The lithiation process is elucidated in terms of lithium insertion, cation migration, and metal-forming conversion reaction. The process is not fully reversible and the reduction of cations to the metallic form is not complete. In particular, iron, cobalt, and nickel, initially present mainly as Fe3+ , Co3+ /Co2+ , and Ni2+ , undergo reduction to Fe0 , Co0 , and Ni0 to different extent (Fe < Co < Ni). Manganese undergoes partial reduction to Mn3+ /Mn2+ and, upon re-oxidation, does not revert to the pristine oxidation state (+4). Zn2+ cations do not electrochemically participate in the conversion reaction, but migrating from tetrahedral to octahedral positions, they facilitate Li-ion transport within lattice channels opened by their migration. Partially reversible crystal phase transitions are observed.

3.
Dalton Trans ; 52(31): 10677-10688, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337724

RESUMO

NiO-based films and nanostructured materials have received increasing attention for a variety of technological applications. Among the possible strategies for their fabrication, atomic layer deposition (ALD) and chemical vapor deposition (CVD), featuring manifold advantages of technological interest, represent appealing molecule-to-material routes for which a rational precursor design is a critical step. In this context, the present study is focused on the coordination sphere engineering of three heteroleptic Ni(II) ß-diketonate-diamine adducts of general formula [NiL2TMEDA] [L = 1,1,1-trifluoro-2,4-pentanedionate (tfa), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionate (fod) or 2,2,6,6-tetramethyl-3,5-heptanedionate (thd), and TMEDA = N,N,N',N'-tetramethylethylenediamine]. Controlled variations in the diketonate structure are pursued to investigate the influence of steric hindrance and fluorination degree on the chemico-physical characteristics of the compounds. A multi-technique investigation supported by density functional calculations highlights that all complexes are air-insensitive and monomeric and that their thermal properties and fragmentation patterns are directly dependent on functional groups in the diketonate ligands. Preliminary thermal CVD experiments demonstrate the precursors' suitability for the obtainment of NiO films endowed with flat and homogeneous surfaces, paving the way to future implementation for CVD end-uses.

4.
Nanomaterials (Basel) ; 13(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985929

RESUMO

Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.

5.
Phys Chem Chem Phys ; 25(3): 2212-2226, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594637

RESUMO

High-entropy oxide nanofibers, based on equimolar (Cr,Mn,Fe,Co,Ni), (Cr,Mn,Fe,Co,Zn) and (Cr,Mn,Fe,Ni,Zn) combinations, were prepared by electrospinning followed by calcination. The obtained hollow nanofibers exhibited a porous structure consisting of interconnected nearly strain-free (Cr1/5Mn1/5Fe1/5Co1/5Ni1/5)3O4, (Cr1/5Mn1/5Fe1/5Co1/5Zn1/5)3O4 and (Cr1/5Mn1/5Fe1/5Ni1/5Zn1/5)3O4 single crystals with a pure Fd3̄m spinel structure. Oxidation state of the cations at the nanofiber surface was assessed by X-ray photoelectron spectroscopy and cation distributions were proposed satisfying electroneutrality and optimizing octahedral stabilization. The magnetic data are consistent with a distribution of cations that satisfies the energetic preferences for octahedral vs. tetrahedral sites and is random only within the octahedral and tetrahedral sublattices. The nanofibers are ferrimagnets with relatively low critical temperature more similar to cubic chromites and manganites than to ferrites. Replacing the magnetic cations Co or Ni with non-magnetic Zn lowers the critical temperature from 374 K (Cr,Mn,Fe,Co,Ni) to 233 and 105 K for (Cr,Mn,Fe,Ni,Zn) and (Cr,Mn,Fe,Co,Zn), respectively. The latter nanofibers additionally have a low temperature transition to a reentrant spin-glass-like state.

6.
iScience ; 26(1): 105794, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36594017

RESUMO

Lithium-ion batteries (LIBs) are among the most promising power sources for electric vehicles, portable electronics and smart grids. In LIBs, the cathode is a major bottleneck, with a particular reference to its low electrical conductivity and Li-ion diffusivity. The coating with carbon layers is generally employed to enhance the electrical conductivity and to protect the active material from degradation during operation. Here, we demonstrate that this layer has a primary role in the lithium diffusivity into the cathode nanoparticles. Positron is a useful quantum probe at the electroactive materials/carbon interface to sense the mobility of Li-ion. Broadband electrical spectroscopy demonstrates that only a small number of Li-ions are moving, and that their diffusion strongly depends on the type of carbon additive. Positron annihilation and broadband electrical spectroscopies are crucial complementary tools to investigate the electronic effect of the carbon phase on the cathode performance and Li-ion dynamics in electroactive materials.

8.
Chem Mater ; 34(12): 5484-5499, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35782208

RESUMO

Perovskite-type solid-state electrolytes, Li3x La2/3-x TiO3 (LLTO), are considered among the most promising candidates for the development of all-solid-state batteries based on lithium metal. Their high bulk ionic conductivity can be modulated by substituting part of the atoms hosted in the A- or B-site of the LLTO structure. In this work, we investigate the crystal structure and the long-range charge migration processes characterizing a family of perovskites with the general formula La1/2+1/2x Li1/2-1/2x Ti1-x Al x O3 (0 ≤ x ≤ 0.6), in which the charge balance and the nominal A-site vacancies (n A = 0) are preserved. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) investigations reveal the presence of a very complex nanostructure constituted by a mixture of two different ordered nanoregions of tetragonal P4/mmm and rhombohedral R3̅c symmetries. Broadband electrical spectroscopy studies confirm the presence of different crystalline domains and demonstrate that the structural fluctuations of the BO6 octahedra require to be intra- and intercell coupled, to enable the long-range diffusion of the lithium cation, in a similar way to the segmental mode that takes place in polymer-ion conductors. These hypotheses are corroborated by density functional theory (DFT) calculations and molecular dynamic simulations.

9.
J Inorg Biochem ; 216: 111335, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360320

RESUMO

A series of iminopyridine complexes of platinum(II), bearing a flexible diethereal, aryl terminated residue, where the size of aryl group is varied from phenyl to 9-anthracenyl, was synthesized. The new complexes are soluble and stable in DMSO/H2O mixtures. Besides the metal center, aryl groups are available for further interactions with DNA, due to the good side chain flexibility. The new aryl functionalized iminopyridine dichlorido platinum(II) complexes show a significant antiproliferative activity on ovarian carcinoma cells and notably, complex 13 is able to overcome cisplatin resistance. The study of the interaction mode of 13 with DNA highlighted the ability to form a molecular complex characterized by a dual (intercalative and groove binding) geometry. The complex is also able to covalently add to DNA even though interstrand cross-links appear significantly hampered with respect to cisplatin. The interactions with the macromolecule are discussed in view of the observed cell effect.


Assuntos
Complexos de Coordenação , Citotoxinas , DNA de Neoplasias , Neoplasias Ovarianas , Platina , Piridinas , Células A549 , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Feminino , Células HT29 , Células HeLa , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Platina/química , Platina/farmacologia , Piridinas/química , Piridinas/farmacologia
10.
ChemSusChem ; 8(18): 3069-76, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26333149

RESUMO

A critical roadblock toward practical Mg-based energy storage technologies is the lack of reversible electrolytes that are safe and electrochemically stable. Here, we report on high-performance electrolytes based on 1-ethyl-3-methylimidazolium chloride (EMImCl) doped with AlCl3 and highly amorphous δ-MgCl2 . The phase diagram of the electrolytes reveals the presence of four thermal transitions that strongly depend on salt content. High-level density functional theory (DFT)-based electronic structure calculations substantiate the structural and vibrational assignment of the coordination complexes. A 3D chloride-concatenated dynamic network model accounts for the outstanding redox behaviour and the electric and magnetic properties, providing insight into the conduction mechanism of the electrolytes. Mg anode cells assembled using the electrolytes were cyclically discharged at a high rate (35 mA g(-1) ), exhibiting an initial capacity of 80 mA h g(-1) and a steady-state voltage of 2.3 V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...