Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 2787, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493931

RESUMO

Availability of relativistically intense, single-cycle, tunable infrared sources will open up new areas of relativistic nonlinear optics of plasmas, impulse IR spectroscopy and pump-probe experiments in the molecular fingerprint region. However, generation of such pulses is still a challenge by current methods. Recently, it has been proposed that time dependent refractive index associated with laser-produced nonlinear wakes in a suitably designed plasma density structure rapidly frequency down-converts photons. The longest wavelength photons slip backwards relative to the evolving laser pulse to form a single-cycle pulse within the nearly evacuated wake cavity. This process is called photon deceleration. Here, we demonstrate this scheme for generating high-power (~100 GW), near single-cycle, wavelength tunable (3-20 µm), infrared pulses using an 810 nm drive laser by tuning the density profile of the plasma. We also demonstrate that these pulses can be used to in-situ probe the transient and nonlinear wakes themselves.

2.
Sci Rep ; 9(1): 7796, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127147

RESUMO

Phase-contrast imaging using X-ray sources with high spatial coherence is an emerging tool in biology and material science. Much of this research is being done using large synchrotron facilities or relatively low-flux microfocus X-ray tubes. An alternative high-flux, ultra-short and high-spatial-coherence table-top X-ray source based on betatron motions of electrons in laser wakefield accelerators has the promise to produce high quality images. In previous phase-contrast imaging studies with betatron sources, single-exposure images with a spatial resolution of 6-70 µm were reported by using large-scale laser systems (60-200 TW). Furthermore, images obtained with multiple exposures tended to have a reduced contrast and resolution due to the shot-to-shot fluctuations. In this article, we demonstrate that a highly stable multiple-exposure betatron source, with an effective average source size of 5 µm, photon number and pointing jitters of <5% and spectral fluctuation of <10%, can be obtained by utilizing ionization injection in pure nitrogen plasma using a 30-40 TW laser. Using this source, high quality phase-contrast images of biological specimens with a 5-µm resolution are obtained for the first time. This work shows a way for the application of high resolution phase-contrast imaging with stable betatron sources using modest power, high repetition-rate lasers.

3.
Phys Rev Lett ; 113(8): 085001, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25192102

RESUMO

We visualize ps-time-scale evolution of an electron density bubble--a wake structure created in atmospheric density plasma by an intense ultrashort laser pulse--from the phase "streak" that the bubble imprints onto a probe pulse that crosses its path obliquely. Phase streaks, recovered in one shot using frequency-domain interferometric techniques, reveal the formation, propagation, and coalescence of the bubble within a 3 mm long ionized helium gas target. 3D particle-in-cell simulations validate the observed density-dependent bubble evolution, and correlate it with the generation of a quasimonoenergetic ∼ 100 MeV electron beam. The results provide a basis for understanding optimized electron acceleration at a plasma density n(e) ≈ 2 × 10(19) cm(-3), inefficient acceleration at lower density, and dephasing limits at higher density.

4.
Opt Lett ; 38(23): 5157-60, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24281534

RESUMO

We demonstrate a single-shot method of visualizing the evolution of light-speed, laser-generated structures as they propagate over hundreds of Rayleigh lengths (typically ≥10 cm) through a tenuous medium. An ultrashort probe pulse crosses the object's path at a small angle (θ<5°) and a specific time delay. Copies of the phase-modulated probe are then relay-imaged to separate detectors from selected object planes along the propagation path. A phase-contrast technique based on Kerr effect and nonlinear absorption converts phase to intensity modulation, improving sensitivity in tenuous media. A continuous record of the probe phase modulation along the propagation path is reconstructed.

5.
Opt Lett ; 31(7): 984-6, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16599232

RESUMO

Tomographic measurement of high harmonic generation in a cluster jet was demonstrated by programming the cluster density distribution with a laser machining technique. The growth of harmonic energy with the propagation of the pump pulse was resolved by scanning the end of the argon cluster distribution in the path of the pump pulse. A downstream shift of the position of rapid growth and a decrease of the slope with increasing backing pressure as results of changes in the phase-matching condition were observed, which explains the presence of an optimal backing pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...