Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 154(3): 303-328, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36434418

RESUMO

Microalgae cultivation utilizes the energy of sunlight to reduce carbon dioxide (CO2) for producing renewable energy feedstock. The commercial success of the biological fixation of carbon in a consistent manner depends upon the availability of a robust microalgae strain. In the present work, we report the identification of a novel marine Nannochloris sp. through multiparametric photosynthetic evaluation. Detailed photobiological analysis of this strain has revealed a smaller functional antenna, faster relaxation kinetics of non-photochemical quenching, and a high photosynthetic rate with increasing light and temperatures. Furthermore, laboratory scale growth assessment demonstrated a broad range halotolerance of 10-70 parts per thousand (PPT) and high-temperature tolerance up to 45 °C. Such traits led to the translation of biomass productivity potential from the laboratory scale (0.2-3.0 L) to the outdoor 50,000 L raceway pond scale (500-m2) without any pond crashes. The current investigation revealed outdoor single-day peak areal biomass productivity of 43 g m-2 d-1 in summer with an annual (March 2019-February 2020) average productivity of 20 g m-2 d-1 in seawater. From a sustainability perspective, this is the first report of successful round-the-year (> 347 days) multi-season (summer, monsoon, and winter) outdoor cultivation of Nannochloris sp. in broad seawater salinity (1-57 PPT), wide temperature ranges (15-40 °C), and in fluctuating light conditions. Concurrently, outdoor cultivation of this strain demonstrated conducive fatty acid distribution, including increased unsaturated fatty acids in winter. This inherent characteristic might play a role in protecting photosynthesis machinery at low temperatures and in high light stress. Altogether, our marine Nannochloris sp. showed tremendous potential for commercial scale cultivation to produce biofuels, food ingredients, and a sustainable source for vegetarian protein.


Assuntos
Clorófitas , Microalgas , Biomassa , Lagoas , Microalgas/metabolismo , Biocombustíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA