Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 183(16): 4886-93, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11466292

RESUMO

Dormant Bacillus subtilis spores can be induced to germinate by nutrients, as well as by nonmetabolizable chemicals, such as a 1:1 chelate of Ca(2+) and dipicolinic acid (DPA). Nutrients bind receptors in the spore, and this binding triggers events in the spore core, including DPA excretion and rehydration, and also activates hydrolysis of the surrounding cortex through mechanisms that are largely unknown. As Ca(2+)-DPA does not require receptors to induce spore germination, we asked if this process utilizes other proteins, such as the putative cortex-lytic enzymes SleB and CwlJ, that are involved in nutrient-induced germination. We found that Ca(2+)-DPA triggers germination by first activating CwlJ-dependent cortex hydrolysis; this mechanism is different from nutrient-induced germination where cortex hydrolysis is not required for the early germination events in the spore core. Nevertheless, since nutrients can induce release of the spore's DPA before cortex hydrolysis, we examined if the DPA excreted from the core acts as a signal to activate CwlJ in the cortex. Indeed, endogenous DPA is required for nutrient-induced CwlJ activation and this requirement was partially remedied by exogenous Ca(2+)-DPA. Our findings thus define a mechanism for Ca(2+)-DPA-induced germination and also provide the first definitive evidence for a signaling pathway that activates cortex hydrolysis in response to nutrients.


Assuntos
Amidoidrolases/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Cálcio/farmacologia , Hidrolases/metabolismo , Ácidos Picolínicos/farmacologia , Amidoidrolases/genética , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Quelantes/farmacologia , Genótipo , Hidrolases/genética , Cinética , Modelos Biológicos , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/fisiologia
2.
J Bacteriol ; 183(13): 3982-90, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11395462

RESUMO

Dormant Bacillus subtilis spores germinate in response to specific nutrients called germinants, which are recognized by multisubunit receptor complexes encoded by members of the gerA family of operons, of which the gerB operon is a member. The germinant receptors are expected to be membrane associated, but there is some debate about whether they are located in the inner or outer spore membrane. In this study we have used Western blot analysis to determine the precise location of GerBA, a gerB-encoded receptor protein, in various spore fractions. GerBA was not extracted from spores by a decoating treatment that removes the coat and outer membrane but was present in lysates from decoated spores and in the insoluble fraction (termed P100) from such lysates that contained inner-membrane vesicles. GerBA was also solubilized from the P100 fraction with detergent but not with high salt. These findings suggest that GerBA is an integral membrane protein located in the spore's inner membrane. Consistent with this idea, GerBA was present in the cell membrane of the outgrowing spore, a membrane that is derived from the dormant spore's inner membrane. Based on these observations we propose that GerBA and probably the entire GerB germinant receptor are located in the inner membrane of the dormant spore. We also estimated that there are only 24 to 40 molecules of GerBA per spore, a number that is consistent with the previously reported low level of gerB operon expression and with the putative receptor function of the proteins encoded by the gerB operon.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/isolamento & purificação , Membrana Celular/química , Proteínas de Membrana , Receptores de Superfície Celular/isolamento & purificação , Bacillus subtilis/fisiologia , Esporos Bacterianos/química , Frações Subcelulares
3.
J Bacteriol ; 182(19): 5505-12, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10986255

RESUMO

Spores of Bacillus subtilis with a mutation in spoVF cannot synthesize dipicolinic acid (DPA) and are too unstable to be purified and studied in detail. However, the spores of a strain lacking the three major germinant receptors (termed Deltager3), as well as spoVF, can be isolated, although they spontaneously germinate much more readily than Deltager3 spores. The Deltager3 spoVF spores lack DPA and have higher levels of core water than Deltager3 spores, although sporulation with DPA restores close to normal levels of DPA and core water to Deltager3 spoVF spores. The DPA-less spores have normal cortical and coat layers, as observed with an electron microscope, but their core region appears to be more hydrated than that of spores with DPA. The Deltager3 spoVF spores also contain minimal levels of the processed active form (termed P(41)) of the germination protease, GPR, a finding consistent with the known requirement for DPA and dehydration for GPR autoprocessing. However, any P(41) formed in Deltager3 spoVF spores may be at least transiently active on one of this protease's small acid-soluble spore protein (SASP) substrates, SASP-gamma. Analysis of the resistance of wild-type, Deltager3, and Deltager3 spoVF spores to various agents led to the following conclusions: (i) DPA and core water content play no role in spore resistance to dry heat, dessication, or glutaraldehyde; (ii) an elevated core water content is associated with decreased spore resistance to wet heat, hydrogen peroxide, formaldehyde, and the iodine-based disinfectant Betadine; (iii) the absence of DPA increases spore resistance to UV radiation; and (iv) wild-type spores are more resistant than Deltager3 spores to Betadine and glutaraldehyde. These results are discussed in view of current models of spore resistance and spore germination.


Assuntos
Bacillus subtilis/fisiologia , Ácidos Picolínicos/metabolismo , Fator sigma , Fatores de Transcrição , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/efeitos da radiação , Proteínas de Bactérias/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Formaldeído/farmacologia , Deleção de Genes , Calefação , Peróxido de Hidrogênio/farmacologia , Oxirredutases/genética , Oxirredutases/fisiologia , Esporos Bacterianos/metabolismo , Esporos Bacterianos/ultraestrutura , Raios Ultravioleta
4.
J Bacteriol ; 182(9): 2513-9, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10762253

RESUMO

Dormant Bacillus subtilis spores germinate in the presence of particular nutrients called germinants. The spores are thought to recognize germinants through receptor proteins encoded by the gerA family of operons, which includes gerA, gerB, and gerK. We sought to substantiate this putative function of the GerA family proteins by characterizing spore germination in a mutant strain that contained deletions at all known gerA-like loci. As expected, the mutant spores germinated very poorly in a variety of rich media. In contrast, they germinated like wild-type spores in a chemical germinant, a 1-1 chelate of Ca(2+) and dipicolinic acid (DPA). These observations showed that proteins encoded by gerA family members are required for nutrient-induced germination but not for chemical-triggered germination, supporting the hypothesis that the GerA family encodes receptors for nutrient germinants. Further characterization of Ca(2+)-DPA-induced germination showed that the effect of Ca(2+)-DPA on spore germination was saturated at 60 mM and had a K(m) of 30 mM. We also found that decoating spores abolished their ability to germinate in Ca(2+)-DPA but not in nutrient germinants, indicating that Ca(2+)-DPA and nutrient germinants probably act through parallel arms of the germination pathway.


Assuntos
Alanina/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Membrana , Ácidos Picolínicos/metabolismo , Alanina/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Meios de Cultura/farmacologia , Mutagênese , Óperon , Fenótipo , Ácidos Picolínicos/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/fisiologia
5.
Gene ; 232(1): 1-10, 1999 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-10333516

RESUMO

Three genes (sspH, sspL, and tlp) encoding new, minor small, acid-soluble proteins (SASP) unique to spores of Bacillus subtilis are expressed only in the forespore compartment during sporulation of this organism. The sspH and sspL genes are monocistronic, whereas tlp is the second gene in an operon with a second small orf, which we have termed sspN. The sspH and sspL genes are recognized primarily by the forespore-specific sigma factor for RNA polymerase, sigmaG; the sspN-tlp operon is recognized equally well by sigmaG and the other forespore-specific sigma factor, sigmaF. Sequences centered 10 and 35nt upstream of the 5'-ends of sspH, sspL, and sspN mRNAs all show homology to -10 and -35 sequences recognized by sigmaF and sigmaG, which are generally quite similar. Mutations disrupting the sspH, sspL, sspN-tlp, or tlp loci cause a loss of the appropriate SASP from spores, but have no discernible effect on sporulation, spore properties, or spore germination.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Genes Bacterianos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Fator sigma/metabolismo , Esporos Bacterianos , Transcrição Gênica
6.
J Bacteriol ; 181(11): 3341-50, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10348844

RESUMO

Bacillus subtilis spores break their metabolic dormancy through a process called germination. Spore germination is triggered by specific molecules called germinants, which are thought to act by binding to and stimulating spore receptors. Three homologous operons, gerA, gerB, and gerK, were previously proposed to encode germinant receptors because inactivating mutations in those genes confer a germinant-specific defect in germination. To more definitely identify genes that encode germinant receptors, we isolated mutants whose spores germinated in the novel germinant D-alanine, because such mutants would likely contain gain-of-function mutations in genes that encoded preexisting germinant receptors. Three independent mutants were isolated, and in each case the mutant phenotype was shown to result from a single dominant mutation in the gerB operon. Two of the mutations altered the gerBA gene, whereas the third affected the gerBB gene. These results suggest that gerBA and gerBB encode components of the germinant receptor. Furthermore, genetic interactions between the wild-type gerB and the mutant gerBA and gerBB alleles suggested that the germinant receptor might be a complex containing GerBA, GerBB, and probably other proteins. Thus, we propose that the gerB operon encodes at least two components of a multicomponent germinant receptor.


Assuntos
Alanina/farmacologia , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Membrana , Mutação/genética , Seleção Genética , Esporos Bacterianos/fisiologia , Alelos , Sequência de Aminoácidos , Asparagina/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/fisiologia , Sequência de Bases , Mapeamento Cromossômico , Análise Mutacional de DNA , Epistasia Genética , Genes Bacterianos/genética , Glucose/farmacologia , Dados de Sequência Molecular , Óperon/genética , Fenótipo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/genética
7.
Gene ; 212(2): 179-88, 1998 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-9611260

RESUMO

A new Bacillus subtilis sporulation-specific gene, yhcN, has been identified, the expression of which is dependent on the forespore-specific sigma factor sigmaG and to a much lesser extent on sigmaF. A translational yhcN-lacZ fusion is expressed at a very high level in the forespore, and the protein encoded by yhcN was detected in the inner spore membrane. A yhcN mutant sporulates normally and yhcN spores have identical resistance properties to wild-type spores. However, the outgrowth of yhcN spores is slower than that of wild-type spores.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Genes Bacterianos , Sequência de Aminoácidos , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutagênese Insercional , Regiões Promotoras Genéticas , Fator sigma/biossíntese , Fator sigma/química , Fator sigma/genética , Fator sigma/fisiologia , Esporos Bacterianos/química , Esporos Bacterianos/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
8.
Genetics ; 148(4): 1777-86, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9560392

RESUMO

Cdc1 function was initially implicated in bud formation and nuclear division because cdc1(Ts) cells arrested with a small bud, duplicated DNA, and undivided nucleus. Our studies show that Cdc1 is necessary for cell growth at several stages of the cell cycle, as well as in pheromone-treated cells. Thus, Cdc1 depletion might affect bud formation and nuclear division, as well as other cellular processes, by blocking a process involved in general cell growth. Cells depleted of intracellular Mn2+ also exhibit a cdc1-like phenotype and recent results suggested Cdc1 might be a Mn2+-dependent protein. We show that all of the conditional Cdc1(Ts) alleles tested cause cells to become sensitive to Mn2+ depletion. In addition, Cdc1 overproduction alleviates the chelator sensitivity of several Mn2+ homeostasis mutants. These findings are compatible with a model in which Cdc1 regulates intracellular, and in particular cytosolic, Mn2+ levels which, in turn, are necessary for cell growth.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Ciclo Celular/fisiologia , Manganês/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Divisão Celular , Parede Celular/fisiologia , DNA Fúngico/metabolismo , Ácido Egtázico/farmacologia , Glicosilação , Complexo de Golgi , Líquido Intracelular , Proteínas de Membrana/genética , Mutagênese , Saccharomyces cerevisiae/genética
9.
Genetics ; 148(4): 1787-98, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9560393

RESUMO

The yeast CDC1 gene encodes an essential protein that has been implicated in the regulation of cytosolic [Mn2+]. To identify factors that impinge upon Cdc1 or the Cdc1-dependent process, we isolated second-site suppressors of the conditional cdc1-1(Ts) growth defect. Recessive suppressors define 15 COS (CdcOne Suppressor) genes. Seven of the fifteen COS genes are required for biogenesis of the vacuole, an organelle known to sequester intracellular Mn2+. An eighth gene, COS16, encodes a vacuolar membrane protein that seems to be involved in Mn2+ homeostasis. These results suggest mutations that block vacuolar Mn2+ sequestration compensate for defects in Cdc1 function. Interestingly, Cdc1 is dispensable in a cos16delta deletion strain, and a cdc1delta cos16delta double mutant exhibits robust growth on medium supplemented with Mn2+. Thus, the single, essential function of Cdc1 is to regulate intracellular, probably cytosolic, Mn2+.


Assuntos
Adenosina Trifosfatases , Proteínas de Ciclo Celular/fisiologia , Homeostase/fisiologia , Manganês/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Fatores de Ribosilação do ADP , Proteínas Adaptadoras de Transporte Vesicular , Ácido Aspártico Endopeptidases/genética , Carboxipeptidases/metabolismo , Catepsina A , Proteínas de Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Genes Fúngicos , Genes Supressores , Proteínas de Membrana/genética , Fenótipo , Saccharomyces cerevisiae/genética , Frações Subcelulares , Temperatura , Vacúolos , Proteínas de Transporte Vesicular
10.
Mol Cell Biol ; 17(11): 6339-47, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9343395

RESUMO

Previous studies attributed the yeast (Saccharomyces cerevisiae) cdc1(Ts) growth defect to loss of an Mn2+-dependent function. In this report we show that cdc1(Ts) temperature-sensitive growth is also associated with an increase in cytosolic Ca2+. We identified two recessive suppressors of the cdc1(Ts) temperature-sensitive growth which block Ca2+ uptake and accumulation, suggesting that cytosolic Ca2+ exacerbates or is responsible for the cdc1(Ts) growth defect. One of the cdc1(Ts) suppressors is identical to a gene, MID1, recently implicated in mating pheromone-stimulated Ca2+ uptake. The gene (CCH1) corresponding to the second suppressor encodes a protein that bears significant sequence similarity to the pore-forming subunit (alpha1) of plasma membrane, voltage-gated Ca2+ channels from higher eukaryotes. Strains lacking Mid1 or Cch1 protein exhibit a defect in pheromone-induced Ca2+ uptake and consequently lose viability upon mating arrest. The mid1delta and cch1delta mutants also display reduced tolerance to monovalent cations such as Li+, suggesting a role for Ca2+ uptake in the calcineurin-dependent ion stress response. Finally, mid1delta cch1delta double mutants are, by both physiological and genetic criteria, identical to single mutants. These and other results suggest Mid1 and Cch1 are components of a yeast Ca2+ channel that may mediate Ca2+ uptake in response to mating pheromone, salt stress, and Mn2+ depletion.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Feromônios/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sequência de Aminoácidos , Transporte Biológico , Canais de Cálcio/genética , Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Ativação do Canal Iônico , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Supressão Genética
11.
Biochim Biophys Acta ; 1309(1-2): 77-80, 1996 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-8950181

RESUMO

A novel human P2 nucleotide receptor has been cloned from a T-cell cDNA library. The predicted amino acid sequence shows characteristics of a G-protein-coupled receptor, and shares 88% homology with a recently characterised rat P2 nucleotide receptor sequence. Distinctive features include an extremely short cytoplasmic tail with only one putative protein kinase C phosphorylation site. Northern blot analysis revealed a 1.9 kb transcript expressed in the placenta.


Assuntos
DNA Complementar/genética , Receptores Purinérgicos P2/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Proteínas de Ligação ao GTP , Humanos , Dados de Sequência Molecular , Especificidade de Órgãos , RNA Mensageiro/análise , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Linfócitos T
12.
Genes Dev ; 4(11): 1835-47, 1990 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-2276620

RESUMO

Previous genetic mosaic studies established that expression of the Drosophila bride of sevenless (boss) gene is required in photoreceptor neuron R8 for the development of photoreceptor neuron R7. This led to the proposal that boss encodes or regulates an R7-specific inductive cue. We have identified the boss gene based on small deletions in mutant alleles and sequenced both cDNAs and corresponding genomic regions. One P element and three X-ray-induced boss alleles show different deletions in the gene ranging in size from 2 to 23 bp, each causing frameshifts leading to premature termination of translation. The boss gene encodes a protein of 896 amino acids with a putative amino-terminal signal sequence, a large extracellular region of 498 amino acids, and seven potential transmembrane domains followed by a carboxy-terminal cytoplasmic tail of 115 amino acids. The putative membrane localization of the boss protein is consistent with a model in which direct interaction between the boss and sevenless proteins specifies R7 cell fate. Another model in which the boss protein functions as a receptor is proposed based on its similarity to the G protein-linked family of membrane receptors.


Assuntos
Proteínas de Drosophila , Drosophila/genética , Proteínas do Olho/genética , Genes , Glicoproteínas de Membrana , Proteínas de Membrana/genética , Receptores Proteína Tirosina Quinases , Retina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Southern Blotting , Membrana Celular/metabolismo , DNA/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Conformação Proteica , Células Ganglionares da Retina/metabolismo , Software , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...