Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Nat Commun ; 15(1): 3681, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693155

RESUMO

Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.


Assuntos
Farmacogenética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Criança , Resistencia a Medicamentos Antineoplásicos/genética , Variação Genética , Linhagem Celular Tumoral , Vincristina/uso terapêutico , Vincristina/farmacologia , Polimorfismo de Nucleotídeo Único , Alelos , Cromatina/metabolismo , Cromatina/genética , Transativadores/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos
2.
Cancer Cell ; 42(4): 552-567.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593781

RESUMO

Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.


Assuntos
Leucemia , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Asparaginase/farmacologia , Farmacologia em Rede , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transdução de Sinais , Leucemia/tratamento farmacológico
3.
Cell Genom ; 3(12): 100442, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116118

RESUMO

B cell lineage acute lymphoblastic leukemia (B-ALL) is composed of diverse molecular subtypes, and while transcriptional and DNA methylation profiling has been extensively examined, the chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq in primary B-ALL cells from 156 patients spanning ten molecular subtypes and present this dataset as a resource. Differential chromatin accessibility and transcription factor (TF) footprint profiling were employed and identified B-ALL cell of origin, TF-target gene interactions enriched in B-ALL, and key TFs associated with accessible chromatin sites preferentially active in B-ALL. We further identified over 20% of accessible chromatin sites exhibiting strong subtype enrichment and candidate TFs that maintain subtype-specific chromatin architectures. Over 9,000 genetic variants were uncovered, contributing to variability in chromatin accessibility among patient samples. Our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants that promote unique gene-regulatory networks.

4.
bioRxiv ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38106088

RESUMO

Sequencing of bulk tumor populations has improved genetic classification and risk assessment of B-ALL, but does not directly examine intratumor heterogeneity or infer leukemia cellular origins. We profiled 89 B-ALL samples by single-cell RNA-seq (scRNA-seq) and compared them to a reference map of normal human B-cell development established using both functional and molecular assays. Intra-sample heterogeneity was driven by cell cycle, metabolism, differentiation, and inflammation transcriptional programs. By inference of B lineage developmental state composition, nearly all samples possessed a high abundance of pro-B cells, with variation between samples mainly driven by sub-populations. However, ZNF384- r and DUX4- r B-ALL showed composition enrichment of hematopoietic stem cells, BCR::ABL1 and KMT2A -r ALL of Early Lymphoid progenitors, MEF2D -r and TCF3::PBX1 of Pre-B cells. Enrichment of Early Lymphoid progenitors correlated with high-risk clinical features. Understanding variation in transcriptional programs and developmental states of B-ALL by scRNA-seq refines existing clinical and genomic classifications and improves prediction of treatment outcome.

5.
medRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986997

RESUMO

PURPOSE: Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease. METHODS: We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing. Experimental modeling was used to examine the mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high throughput drug screening of cell lines and xenografts. RESULTS: γδ T-ALL in children under three was extremely high-risk with 5-year event-free survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P =9.5 x 10 -5 ) and 5-year overall survival (49% v. 78% [age 3-<10] and 81% [age ≥10], P =0.002), differences not observed in non-γδ T-ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 activation and inactivating STAG2 inactivation ( STAG2/LMO2 ). Mechanistically, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping resulting in deregulation of gene expression associated with T-cell differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy of PARP inhibitors as well as other potential targets including nelarabine. CONCLUSION: γδ T-ALL in children under the age of three is extremely high-risk and enriched for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and therapeutic framework for pediatric γδ T-ALL. SUPPORT: The authors are supported by the American and Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, NCI grants R35 CA197695, P50 CA021765 (C.G.M.), the Henry Schueler 41&9 Foundation (C.G.M.), and a St. Baldrick's Foundation Robert J. Arceci Innovation Award (C.G.M.), Gabriella Miller Kids First X01HD100702 (D.T.T and C.G.M.) and R03CA256550 (D.T.T. and C.G.M.), F32 5F32CA254140 (L.M.), and a Garwood Postdoctoral Fellowship of the Hematological Malignancies Program of the St Jude Children's Research Hospital Comprehensive Cancer Center (S.K.). This project was supported by the National Cancer Institute of the National Institutes of Health under the following award numbers: U10CA180820, UG1CA189859, U24CA114766, U10CA180899, U10CA180866 and U24CA196173. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies were not directly involved in the design of the study, gathering, analysis and interpretation of the data, writing of the manuscript, or decision to submit the manuscript for publication.

7.
Cell Rep ; 42(7): 112804, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37453060

RESUMO

The bone marrow microenvironment (BME) drives drug resistance in acute lymphoblastic leukemia (ALL) through leukemic cell interactions with bone marrow (BM) niches, but the underlying mechanisms remain unclear. Here, we show that the interaction between ALL and mesenchymal stem cells (MSCs) through integrin ß1 induces an epithelial-mesenchymal transition (EMT)-like program in MSC-adherent ALL cells, resulting in drug resistance and enhanced survival. Moreover, single-cell RNA sequencing analysis of ALL-MSC co-culture identifies a hybrid cluster of MSC-adherent ALL cells expressing both B-ALL and MSC signature genes, orchestrated by a WNT/ß-catenin-mediated EMT-like program. Blockade of interaction between ß-catenin and CREB binding protein impairs the survival and drug resistance of MSC-adherent ALL cells in vitro and results in a reduction in leukemic burden in vivo. Targeting of this WNT/ß-catenin-mediated EMT-like program is a potential therapeutic approach to overcome cell extrinsically acquired drug resistance in ALL.


Assuntos
Transição Epitelial-Mesenquimal , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , beta Catenina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Técnicas de Cocultura , Resistência a Medicamentos , Proliferação de Células , Microambiente Tumoral
8.
Cancer ; 129(16): 2479-2490, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37185873

RESUMO

BACKGROUND: Obesity (body mass index [BMI] ≥30 kg/m2 ) is an important epidemiological risk factor for developing acute myeloid leukemia (AML). Therefore, the authors studied the association of obesity with clinical and genetic phenotype and its impact on outcome in adults with AML. METHODS: The authors analyzed BMI in 1088 adults who were receiving intensive remission induction and consolidation therapy in two prospective, randomized therapeutic clinical trials of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network: E1900 (ClinicalTrials.gov identifier NCT00049517; patients younger than 60 years) and E3999 (ClinicalTrials.gov identifier NCT00046930; patients aged 60 years or older). RESULTS: Obesity was prevalent at diagnosis (33%) and, compared with nonobesity, was associated with intermediate-risk cytogenetics group (p = .008), poorer performance status (p = .01), and a trend toward older age (p = .06). Obesity was not associated with somatic mutations among a selected 18-gene panel that was tested in a subset of younger patients. Obesity was not associated with clinical outcome (including complete remission, early death, or overall survival), and the authors did not identify any patient subgroup that had inferior outcomes based on BMI. Obese patients were significantly more likely to receive <90% of the intended daunorubicin dose despite protocol specification, particularly in the E1900 high-dose (90 mg/m2 ) daunorubicin arm (p = .002); however, this did not correlate with inferior overall survival on multivariate analysis (hazard ratio, 1.39; 95% confidence interval, 0.90-2.13; p = .14). CONCLUSIONS: Obesity is associated with unique clinical and disease-related phenotypic features in AML and may influence physician treatment decisions regarding daunorubicin dosing. However, the current study demonstrates that obesity is not a factor in survival, and strict adherence to body surface area-based dosing is not necessary because dose adjustments do not affect outcomes.


Assuntos
Antraciclinas , Leucemia Mieloide Aguda , Humanos , Antraciclinas/uso terapêutico , Antibióticos Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Citarabina , Daunorrubicina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Obesidade/complicações , Estudos Prospectivos , Indução de Remissão , Pessoa de Meia-Idade , Idoso , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993276

RESUMO

Initiation of B-cell receptor (BCR) 1 signaling, and subsequent antigen-encounter in germinal centers 2,3 represent milestones of B-lymphocyte development that are both marked by sharp increases of CD25 surface-expression. Oncogenic signaling in B-cell leukemia (B-ALL) 4 and lymphoma 5 also induced CD25-surface expression. While CD25 is known as an IL2-receptor chain on T- and NK-cells 6-9 , the significance of its expression on B-cells was unclear. Our experiments based on genetic mouse models and engineered patient-derived xenografts revealed that, rather than functioning as an IL2-receptor chain, CD25 expressed on B-cells assembled an inhibitory complex including PKCδ and SHIP1 and SHP1 phosphatases for feedback control of BCR-signaling or its oncogenic mimics. Recapitulating phenotypes of genetic ablation of PKCδ 10 - 12 , SHIP1 13,14 and SHP1 14, 15,16 , conditional CD25-deletion decimated early B-cell subsets but expanded mature B-cell populations and induced autoimmunity. In B-cell malignancies arising from early (B-ALL) and late (lymphoma) stages of B-cell development, CD25-loss induced cell death in the former and accelerated proliferation in the latter. Clinical outcome annotations mirrored opposite effects of CD25-deletion: high CD25 expression levels predicted poor clinical outcomes for patients with B-ALL, in contrast to favorable outcomes for lymphoma-patients. Biochemical and interactome studies revealed a critical role of CD25 in BCR-feedback regulation: BCR-signaling induced PKCδ-mediated phosphorylation of CD25 on its cytoplasmic tail (S 268 ). Genetic rescue experiments identified CD25-S 268 tail-phosphorylation as central structural requirement to recruit SHIP1 and SHP1 phosphatases to curb BCR-signaling. A single point mutation CD25 S268A abolished recruitment and activation of SHIP1 and SHP1 to limit duration and strength of BCR-signaling. Loss of phosphatase-function, autonomous BCR-signaling and Ca 2+ -oscillations induced anergy and negative selection during early B-cell development, as opposed to excessive proliferation and autoantibody production in mature B-cells. These findings highlight the previously unrecognized role of CD25 in assembling inhibitory phosphatases to control oncogenic signaling in B-cell malignancies and negative selection to prevent autoimmune disease.

10.
bioRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824825

RESUMO

B-cell lineage acute lymphoblastic leukemia (B-ALL) is comprised of diverse molecular subtypes and while transcriptional and DNA methylation profiling of B-ALL subtypes has been extensively examined, the accompanying chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq for 10 B-ALL molecular subtypes in primary ALL cells from 154 patients. Comparisons with B-cell progenitors identified candidate B-ALL cell-of-origin and AP-1-associated cis-regulatory rewiring in B-ALL. Cis-regulatory rewiring promoted B-ALL-specific gene regulatory networks impacting oncogenic signaling pathways that perturb normal B-cell development. We also identified that over 20% of B-ALL accessible chromatin sites exhibit strong subtype enrichment, with transcription factor (TF) footprint profiling identifying candidate TFs that maintain subtype-specific chromatin architectures. Over 9000 inherited genetic variants were further uncovered that contribute to variability in chromatin accessibility among individual patient samples. Overall, our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants which promote unique gene regulatory networks that contribute to transcriptional differences among B-ALL subtypes.

11.
medRxiv ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798219

RESUMO

Although acute lymphoblastic leukemia (ALL) is the most common childhood cancer, there is limited understanding of the contribution of inherited genetic variation on inter-individual differences in chemotherapy response. Defining genetic factors impacting therapy failure can help better predict response and identify drug resistance mechanisms. We therefore mapped inherited noncoding variants associated with chemotherapeutic drug resistance and/or treatment outcome to ALL cis-regulatory elements and investigated their gene regulatory potential and genomic connectivity using massively parallel reporter assays and promoter capture Hi-C, respectively. We identified 53 variants with reproducible allele-specific effects on transcription and high-confidence gene targets. Subsequent functional interrogation of the top variant (rs1247117) determined that it disrupted a PU.1 consensus motif and PU.1 binding affinity. Importantly, deletion of the genomic interval containing rs1247117 sensitized ALL cells to vincristine. Together, these data demonstrate that noncoding regulatory variation associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to chemotherapeutic agents in ALL.

12.
Blood ; 141(19): 2372-2389, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580665

RESUMO

Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.


Assuntos
Proteína BRCA1 , Dano ao DNA , Leucemia , Animais , Camundongos , Proteína BRCA2 , DNA/metabolismo , Leucemia/enzimologia , Leucemia/genética , DNA Polimerase teta
13.
Sci Adv ; 8(50): eadd6403, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516256

RESUMO

Blinatumomab is an efficacious immunotherapeutic agent in B cell acute lymphoblastic leukemia (B-ALL). However, the pharmacogenomic basis of leukemia response to blinatumomab is unclear. Using genome-wide CRISPR, we comprehensively identified leukemia intrinsic factors of blinatumomab sensitivity, i.e., the loss of CD58 as a top driver for resistance, in addition to CD19. Screening 1639 transcription factor genes, we then identified PAX5 as the key activator of CD58. ALL with the PAX5 P80R mutation also expressed the lowest level of CD58 among 20 ALL molecular subtypes in 1988 patients. Genome editing confirmed the effects of this mutation on CD58 expression and blinatumomab sensitivity in B-ALL, with validation in patient leukemic blasts. We described a PAX5-driven enhancer at the CD58 locus, which was disrupted by PAX5 P80R, and the loss of CD58 abolished blinatumomab-induced T cell activation with global changes in transcriptomic/epigenomic program. In conclusion, we identified previously unidentified genetic mechanisms of blinatumomab resistance in B-ALL, suggesting strategies for genomics-guided treatment individualization.


Assuntos
Anticorpos Biespecíficos , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Antígenos CD19/genética , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo
14.
Leuk Res ; 123: 106971, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332294

RESUMO

Measurable residual disease (MRD) assessment provides a potent indicator of the efficacy of anti-leukemic therapy. It is unknown, however, whether integrating MRD with molecular profiling better identifies patients at risk of relapse. To investigate the clinical relevance of MRD in relation to a molecular-based prognostic schema, we measured MRD by flow cytometry in 189 AML patients enrolled in ECOG-ACRIN E1900 trial (NCT00049517) in morphologic complete remission (CR) (28.8 % of the original cohort) representing 44.4 % of CR patients. MRD positivity was defined as ≥ 0.1 % of leukemic bone marrow cells. Risk classification was based on standard cytogenetics, fluorescence-in-situ-hybridization, somatic gene analysis, and sparse whole genome sequencing for copy number ascertainment. At 84.6 months median follow-up of patients still alive at the time of analysis (range 47.0-120 months), multivariate analysis demonstrated that MRD status at CR (p = 0.001) and integrated molecular risk (p = 0.0004) independently predicted overall survival (OS). Among risk classes, MRD status significantly affected OS only in the favorable risk group (p = 0.002). Expression of CD25 (α-chain of the interleukin-2 receptor) by leukemic myeloblasts at diagnosis negatively affected OS independent of post-treatment MRD levels. These data suggest that integrating MRD with genetic profiling and pre-treatment CD25 expression may improve prognostication in AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Citometria de Fluxo , Genômica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Prognóstico
16.
Commun Biol ; 5(1): 645, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773471

RESUMO

Dimensionality reduction approaches are commonly used for the deconvolution of high-dimensional metabolomics datasets into underlying core metabolic processes. However, current state-of-the-art methods are widely incapable of detecting nonlinearities in metabolomics data. Variational Autoencoders (VAEs) are a deep learning method designed to learn nonlinear latent representations which generalize to unseen data. Here, we trained a VAE on a large-scale metabolomics population cohort of human blood samples consisting of over 4500 individuals. We analyzed the pathway composition of the latent space using a global feature importance score, which demonstrated that latent dimensions represent distinct cellular processes. To demonstrate model generalizability, we generated latent representations of unseen metabolomics datasets on type 2 diabetes, acute myeloid leukemia, and schizophrenia and found significant correlations with clinical patient groups. Notably, the VAE representations showed stronger effects than latent dimensions derived by linear and non-linear principal component analysis. Taken together, we demonstrate that the VAE is a powerful method that learns biologically meaningful, nonlinear, and transferrable latent representations of metabolomics data.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Metabolômica , Análise de Componente Principal
17.
Nat Cancer ; 3(6): 768-782, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35590059

RESUMO

DNA methylation is tightly regulated during development and is stably maintained in healthy cells. In contrast, cancer cells are commonly characterized by a global loss of DNA methylation co-occurring with CpG island hypermethylation. In acute lymphoblastic leukemia (ALL), the commonest childhood cancer, perturbations of CpG methylation have been reported to be associated with genetic disease subtype and outcome, but data from large cohorts at a genome-wide scale are lacking. Here, we performed whole-genome bisulfite sequencing across ALL subtypes, leukemia cell lines and healthy hematopoietic cells, and show that unlike most cancers, ALL samples exhibit CpG island hypermethylation but minimal global loss of methylation. This was most pronounced in T cell ALL and accompanied by an exceptionally broad range of hypermethylation of CpG islands between patients, which is influenced by TET2 and DNMT3B. These findings demonstrate that ALL is characterized by an unusually highly methylated genome and provide further insights into the non-canonical regulation of methylation in cancer.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Ilhas de CpG/genética , Metilação de DNA/genética , Genoma Humano , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiões Promotoras Genéticas
18.
Nat Genet ; 54(5): 637-648, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513723

RESUMO

Chronic lymphoproliferative disorder of natural killer cells (CLPD-NK) is characterized by clonal expansion of natural killer (NK) cells where the underlying genetic mechanisms are incompletely understood. In the present study, we report somatic mutations in the chemokine gene CCL22 as the hallmark of a distinct subset of CLPD-NK. CCL22 mutations were enriched at highly conserved residues, mutually exclusive of STAT3 mutations and associated with gene expression programs that resembled normal CD16dim/CD56bright NK cells. Mechanistically, the mutations resulted in ligand-biased chemokine receptor signaling, with decreased internalization of the G-protein-coupled receptor (GPCR) for CCL22, CCR4, via impaired ß-arrestin recruitment. This resulted in increased cell chemotaxis in vitro, bidirectional crosstalk with the hematopoietic microenvironment and enhanced NK cell proliferation in vivo in transgenic human IL-15 mice. Somatic CCL22 mutations illustrate a unique mechanism of tumor formation in which gain-of-function chemokine mutations promote tumorigenesis by biased GPCR signaling and dysregulation of microenvironmental crosstalk.


Assuntos
Quimiocina CCL22 , Células Matadoras Naturais , Transtornos Linfoproliferativos , Animais , Quimiocina CCL22/genética , Células Matadoras Naturais/patologia , Ativação Linfocitária , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/metabolismo , Transtornos Linfoproliferativos/patologia , Camundongos , Mutação
19.
JCO Precis Oncol ; 6: e2100326, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442720

RESUMO

PURPOSE: Most cases of pediatric acute leukemia occur in low- and middle-income countries, where health centers lack the tools required for accurate diagnosis and disease classification. Recent research shows the robustness of using unbiased short-read RNA sequencing to classify genomic subtypes of acute leukemia. Compared with short-read sequencing, nanopore sequencing has low capital and consumable costs, making it suitable for use in locations with limited health infrastructure. MATERIALS AND METHODS: We show the feasibility of nanopore mRNA sequencing on 134 cryopreserved acute leukemia specimens (26 acute myeloid leukemia [AML], 73 B-lineage acute lymphoblastic leukemia [B-ALL], 34 T-lineage acute lymphoblastic leukemia, and one acute undifferentiated leukemia). Using multiple library preparation approaches, we generated long-read transcripts for each sample. We developed a novel composite classification approach to predict acute leukemia lineage and major B-ALL and AML molecular subtypes directly from gene expression profiles. RESULTS: We demonstrate accurate classification of acute leukemia samples into AML, B-ALL, or T-lineage acute lymphoblastic leukemia (96.2% of cases are classifiable with a probability of > 0.8, with 100% accuracy) and further classification into clinically actionable genomic subtypes using shallow RNA nanopore sequencing, with 96.2% accuracy for major AML subtypes and 94.1% accuracy for major B-lineage acute lymphoblastic leukemia subtypes. CONCLUSION: Transcriptional profiling of acute leukemia samples using nanopore technology for diagnostic classification is feasible and accurate, which has the potential to improve the accuracy of cancer diagnosis in low-resource settings.


Assuntos
Leucemia Mieloide Aguda , Sequenciamento por Nanoporos , Nanoporos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Doença Aguda , Criança , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , RNA Mensageiro/genética
20.
Blood ; 140(2): 112-120, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35427411

RESUMO

Herein, we present the long-term follow-up of the randomized E1912 trial comparing the long-term efficacy of ibrutinib-rituximab (IR) therapy to fludarabine, cyclophosphamide, and rituximab (FCR) and describe the tolerability of continuous ibrutinib. The E1912 trial enrolled 529 treatment-naïve patients aged ≤70 years with chronic lymphocytic leukemia (CLL). Patients were randomly assigned (2:1 ratio) to receive IR or 6 cycles of FCR. With a median follow-up of 5.8 years, median progression-free survival (PFS) is superior for IR (hazard ratio [HR], 0.37; P < .001). IR improved PFS relative to FCR in patients with both immunoglobulin heavy chain variable region (IGHV) gene mutated CLL (HR: 0.27; P < .001) and IGHV unmutated CLL (HR: 0.27; P < .001). Among the 354 patients randomized to IR, 214 (60.5%) currently remain on ibrutinib. Among the 138 IR-treated patients who discontinued treatment, 37 (10.5% of patients who started IR) discontinued therapy due to disease progression or death, 77 (21.9% of patients who started IR) discontinued therapy for adverse events (AEs)/complications, and 24 (6.8% of patients who started IR) withdrew for other reasons. Progression was uncommon among patients able to remain on ibrutinib. The median time from ibrutinib discontinuation to disease progression or death among those who discontinued treatment for a reason other than progression was 25 months. Sustained improvement in overall survival (OS) was observed for patients in the IR arm (HR, 0.47; P = .018). In conclusion, IR therapy offers superior PFS relative to FCR in patients with IGHV mutated or unmutated CLL, as well as superior OS. Continuous ibrutinib therapy is tolerated beyond 5 years in the majority of CLL patients. This trial was registered at www.clinicaltrials.gov as #NCT02048813.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ciclofosfamida/efeitos adversos , Progressão da Doença , Humanos , Região Variável de Imunoglobulina , Leucemia Linfocítica Crônica de Células B/genética , Piperidinas , Rituximab/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...