Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 227(1)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38551457

RESUMO

Across diverse insect taxa, the behavior and physiology of females dramatically changes after mating-processes largely triggered by the transfer of seminal proteins from their mates. In the vinegar fly Drosophila melanogaster, the seminal protein sex peptide (SP) decreases the likelihood of female flies remating and causes additional behavioral and physiological changes that promote fertility including increasing egg production. Although SP is only found in the Drosophila genus, its receptor, sex peptide receptor (SPR), is the widely conserved myoinhibitory peptide (MIP) receptor. To test the functional role of SPR in mediating postmating responses in a non-Drosophila dipteran, we generated 2 independent Spr-knockout alleles in the yellow fever mosquito, Aedes aegypti. Although SPR is needed for postmating responses in Drosophila and the cotton bollworm Helicoverpa armigera, Spr mutant Ae. aegypti show completely normal postmating decreases in remating propensity and increases in egg laying. In addition, injection of synthetic SP or accessory gland homogenate from D. melanogaster into virgin female mosquitoes did not elicit these postmating responses. Our results demonstrate that Spr is not required for these canonical postmating responses in Ae. aegypti, indicating that other, as yet unknown, signaling pathways are likely responsible for these behavioral switches in this disease vector.


Assuntos
Aedes , Oviposição , Animais , Aedes/genética , Aedes/fisiologia , Feminino , Drosophila melanogaster/fisiologia , Drosophila melanogaster/genética , Comportamento Sexual Animal , Masculino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo
2.
RNA ; 29(11): 1673-1690, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562960

RESUMO

U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.


Assuntos
Ribonucleoproteína Nuclear Pequena U7 , Ribonucleoproteínas Nucleares Pequenas , Animais , Ribonucleoproteína Nuclear Pequena U7/química , Metilação , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Histonas/metabolismo , Arginina/química
3.
Front Immunol ; 14: 1163367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469515

RESUMO

Background: Salivary glands from blood-feeding arthropods secrete several molecules that inhibit mammalian hemostasis and facilitate blood feeding and pathogen transmission. The salivary functions from Simulium guianense, the main vector of Onchocerciasis in South America, remain largely understudied. Here, we have characterized a salivary protease inhibitor (Guianensin) from the blackfly Simulium guianense. Materials and methods: A combination of bioinformatic and biophysical analyses, recombinant protein production, in vitro and in vivo experiments were utilized to characterize the molecula mechanism of action of Guianensin. Kinetics of Guianensin interaction with proteases involved in vertebrate inflammation and coagulation were carried out by surface plasmon resonance and isothermal titration calorimetry. Plasma recalcification and coagulometry and tail bleeding assays were performed to understand the role of Guianensin in coagulation. Results: Guianensin was identified in the sialotranscriptome of adult S. guianense flies and belongs to the Kunitz domain of protease inhibitors. It targets various serine proteases involved in hemostasis and inflammation. Binding to these enzymes is highly specific to the catalytic site and is not detectable for their zymogens, the catalytic site-blocked human coagulation factor Xa (FXa), or thrombin. Accordingly, Guianensin significantly increased both PT (Prothrombin time) and aPTT (Activated partial thromboplastin time) in human plasma and consequently increased blood clotting time ex vivo. Guianensin also inhibited prothrombinase activity on endothelial cells. We show that Guianensin acts as a potent anti-inflammatory molecule on FXa-induced paw edema formation in mice. Conclusion: The information generated by this work highlights the biological functionality of Guianensin as an antithrombotic and anti-inflammatory protein that may play significant roles in blood feeding and pathogen transmission.


Assuntos
Hemostáticos , Simuliidae , Camundongos , Humanos , Animais , Células Endoteliais , Hemostasia , Anti-Inflamatórios/farmacologia , Inflamação , Proteínas e Peptídeos Salivares/farmacologia , Mamíferos
4.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37215023

RESUMO

U7 snRNP is a multi-subunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50 and pICln known to methylate arginines in the C-terminal regions of the Sm proteins B, D1 and D3 during the spliceosomal Sm ring assembly. Both biochemical and Cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the N-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an N-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.

5.
Curr Biol ; 32(16): R874-R876, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998594

RESUMO

A new study identifies a mosquito salivary protein that directly binds to a cuticular partner during biting to reshape the mosquito mouthparts, stimulate salivation and probing, and enhance blood-feeding efficiency. By affecting mosquito-host interactions, this phenomenon could influence pathogen transmission.


Assuntos
Culicidae , Mosquitos Vetores , Animais , Biologia , Vetores de Doenças , Lábio
6.
Oecologia ; 191(1): 1-10, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31227906

RESUMO

Food quality and quantity serve as the basis for cycling of key chemical elements in trophic interactions; yet the role of nutrient stoichiometry in shaping host-pathogen interactions is under appreciated. Most of the emergent mosquito-borne viruses affecting human health are transmitted by mosquitoes that inhabit container systems during their immature stages, where allochthonous input of detritus serves as the basal nutrients. Quantity and type of detritus (animal and plant) were manipulated in microcosms containing newly hatched Aedes aegypti mosquito larvae. Adult mosquitoes derived from these microcosms were allowed to ingest Zika virus-infected blood and then tested for disseminated infection, transmission, and total nutrients (percent carbon, percent nitrogen, ratio of carbon to nitrogen). Treatments lacking high-quality animal (insect) detritus significantly delayed development. Survivorship to adulthood was closely associated with the amount of insect detritus present. Insect detritus was positively correlated with percent nitrogen, which affected Zika virus infection. Disseminated infection and transmission decreased with increasing insect detritus and percent nitrogen. We provide the first definitive evidence linking nutrient stoichiometry to arbovirus infection and transmission in a mosquito using a model system of invasive Ae. aegypti and emergent Zika virus.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Animais , Interações Hospedeiro-Patógeno , Humanos , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...