Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753490

RESUMO

A long-standing discrepancy exists between general circulation models (GCMs) and satellite observations: The multimodel mean temperature of the midtroposphere (TMT) in the tropics warms at approximately twice the rate of observations. Using a large ensemble of simulations from a single climate model, we find that tropical TMT trends (1979-2018) vary widely and that a subset of realizations are within the range of satellite observations. Realizations with relatively small tropical TMT trends are accompanied by subdued sea-surface warming in the tropical central and eastern Pacific. Observed changes in sea-surface temperature have a similar pattern, implying that the observed tropical TMT trend has been reduced by multidecadal variability. We also assess the latest generation of GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). CMIP6 simulations with muted warming over the central and eastern Pacific also show reduced tropical tropospheric warming. We find that 13% of the model realizations have tropical TMT trends within the observed trend range. These simulations are from models with both small and large climate sensitivity values, illustrating that the magnitude of tropical tropospheric warming is not solely a function of climate sensitivity. For global averages, one-quarter of model simulations exhibit TMT trends in accord with observations. Our results indicate that even on 40-y timescales, natural climate variability is important to consider when comparing observed and simulated tropospheric warming and is sufficiently large to explain TMT trend differences between models and satellite data.

2.
Proc Natl Acad Sci U S A ; 116(40): 19821-19827, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527233

RESUMO

Large initial condition ensembles of a climate model simulation provide many different realizations of internal variability noise superimposed on an externally forced signal. They have been used to estimate signal emergence time at individual grid points, but are rarely employed to identify global fingerprints of human influence. Here we analyze 50- and 40-member ensembles performed with 2 climate models; each was run with combined human and natural forcings. We apply a pattern-based method to determine signal detection time [Formula: see text] in individual ensemble members. Distributions of [Formula: see text] are characterized by the median [Formula: see text] and range [Formula: see text], computed for tropospheric and stratospheric temperatures over 1979 to 2018. Lower stratospheric cooling-primarily caused by ozone depletion-yields [Formula: see text] values between 1994 and 1996, depending on model ensemble, domain (global or hemispheric), and type of noise data. For greenhouse-gas-driven tropospheric warming, larger noise and slower recovery from the 1991 Pinatubo eruption lead to later signal detection (between 1997 and 2003). The stochastic uncertainty [Formula: see text] is greater for tropospheric warming (8 to 15 y) than for stratospheric cooling (1 to 3 y). In the ensemble generated by a high climate sensitivity model with low anthropogenic aerosol forcing, simulated tropospheric warming is larger than observed; detection times for tropospheric warming signals in satellite data are within [Formula: see text] ranges in 60% of all cases. The corresponding number is 88% for the second ensemble, which was produced by a model with even higher climate sensitivity but with large aerosol-induced cooling. Whether the latter result is physically plausible will require concerted efforts to reduce significant uncertainties in aerosol forcing.


Assuntos
Aerossóis , Mudança Climática , Clima , Efeito Estufa , Atmosfera , Conservação dos Recursos Naturais , Geografia , Humanos , Análise dos Mínimos Quadrados , Ozônio , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Processos Estocásticos , Temperatura , Fatores de Tempo , Incerteza
3.
Sci Rep ; 7(1): 2336, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539644

RESUMO

Satellite temperature measurements do not support the recent claim of a "leveling off of warming" over the past two decades. Tropospheric warming trends over recent 20-year periods are always significantly larger (at the 10% level or better) than model estimates of 20-year trends arising from natural internal variability. Over the full 38-year period of the satellite record, the separation between observed warming and internal variability estimates is even clearer. In two out of three recent satellite datasets, the tropospheric warming from 1979 to 2016 is unprecedented relative to internally generated temperature trends on the 38-year timescale.

4.
Proc Natl Acad Sci U S A ; 110(43): 17235-40, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24043789

RESUMO

Since the late 1970s, satellite-based instruments have monitored global changes in atmospheric temperature. These measurements reveal multidecadal tropospheric warming and stratospheric cooling, punctuated by short-term volcanic signals of reverse sign. Similar long- and short-term temperature signals occur in model simulations driven by human-caused changes in atmospheric composition and natural variations in volcanic aerosols. Most previous comparisons of modeled and observed atmospheric temperature changes have used results from individual models and individual observational records. In contrast, we rely on a large multimodel archive and multiple observational datasets. We show that a human-caused latitude/altitude pattern of atmospheric temperature change can be identified with high statistical confidence in satellite data. Results are robust to current uncertainties in models and observations. Virtually all previous research in this area has attempted to discriminate an anthropogenic signal from internal variability. Here, we present evidence that a human-caused signal can also be identified relative to the larger "total" natural variability arising from sources internal to the climate system, solar irradiance changes, and volcanic forcing. Consistent signal identification occurs because both internal and total natural variability (as simulated by state-of-the-art models) cannot produce sustained global-scale tropospheric warming and stratospheric cooling. Our results provide clear evidence for a discernible human influence on the thermal structure of the atmosphere.


Assuntos
Atmosfera/química , Clima , Aquecimento Global , Temperatura , Simulação por Computador , Ecossistema , Humanos , Modelos Teóricos , Luz Solar , Erupções Vulcânicas
5.
Proc Natl Acad Sci U S A ; 110(1): 26-33, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23197824

RESUMO

We perform a multimodel detection and attribution study with climate model simulation output and satellite-based measurements of tropospheric and stratospheric temperature change. We use simulation output from 20 climate models participating in phase 5 of the Coupled Model Intercomparison Project. This multimodel archive provides estimates of the signal pattern in response to combined anthropogenic and natural external forcing (the fingerprint) and the noise of internally generated variability. Using these estimates, we calculate signal-to-noise (S/N) ratios to quantify the strength of the fingerprint in the observations relative to fingerprint strength in natural climate noise. For changes in lower stratospheric temperature between 1979 and 2011, S/N ratios vary from 26 to 36, depending on the choice of observational dataset. In the lower troposphere, the fingerprint strength in observations is smaller, but S/N ratios are still significant at the 1% level or better, and range from three to eight. We find no evidence that these ratios are spuriously inflated by model variability errors. After removing all global mean signals, model fingerprints remain identifiable in 70% of the tests involving tropospheric temperature changes. Despite such agreement in the large-scale features of model and observed geographical patterns of atmospheric temperature change, most models do not replicate the size of the observed changes. On average, the models analyzed underestimate the observed cooling of the lower stratosphere and overestimate the warming of the troposphere. Although the precise causes of such differences are unclear, model biases in lower stratospheric temperature trends are likely to be reduced by more realistic treatment of stratospheric ozone depletion and volcanic aerosol forcing.


Assuntos
Atmosfera , Mudança Climática , Atividades Humanas , Modelos Teóricos , Temperatura , Simulação por Computador , Geografia , Humanos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...