Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(13): 2911-2928.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37269832

RESUMO

Animals with complex nervous systems demand sleep for memory consolidation and synaptic remodeling. Here, we show that, although the Caenorhabditis elegans nervous system has a limited number of neurons, sleep is necessary for both processes. In addition, it is unclear if, in any system, sleep collaborates with experience to alter synapses between specific neurons and whether this ultimately affects behavior. C. elegans neurons have defined connections and well-described contributions to behavior. We show that spaced odor-training and post-training sleep induce long-term memory. Memory consolidation, but not acquisition, requires a pair of interneurons, the AIYs, which play a role in odor-seeking behavior. In worms that consolidate memory, both sleep and odor conditioning are required to diminish inhibitory synaptic connections between the AWC chemosensory neurons and the AIYs. Thus, we demonstrate in a living organism that sleep is required for events immediately after training that drive memory consolidation and alter synaptic structures.


Assuntos
Caenorhabditis elegans , Odorantes , Animais , Caenorhabditis elegans/fisiologia , Olfato , Sono/fisiologia , Sinapses/fisiologia
2.
Dev Cell ; 56(13): 1989-2006.e6, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118203

RESUMO

Oncogenes can alter metabolism by changing the balance between anabolic and catabolic processes. However, how oncogenes regulate tumor cell biomass remains poorly understood. Using isogenic MCF10A cells transformed with nine different oncogenes, we show that specific oncogenes reduce the biomass of cancer cells by promoting extracellular vesicle (EV) release. While MYC and AURKB elicited the highest number of EVs, each oncogene selectively altered the protein composition of released EVs. Likewise, oncogenes alter secreted miRNAs. MYC-overexpressing cells require ceramide, whereas AURKB requires ESCRT to release high levels of EVs. We identify an inverse relationship between MYC upregulation and activation of the RAS/MEK/ERK signaling pathway for regulating EV release in some tumor cells. Finally, lysosome genes and activity are downregulated in the context of MYC and AURKB, suggesting that cellular contents, instead of being degraded, were released via EVs. Thus, oncogene-mediated biomass regulation via differential EV release is a new metabolic phenotype.


Assuntos
Aurora Quinase B/genética , Vesículas Extracelulares/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogênicas c-myc/genética , Metabolismo Energético/genética , Vesículas Extracelulares/genética , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Humanos , Lisossomos/genética , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/genética , Metabolismo/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...