Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
TH Open ; 7(3): e195-e205, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37435564

RESUMO

Background Intracerebral hemorrhage is the most serious complication of anticoagulant therapy but the effects of different types of oral anticoagulants on the expansion of these hemorrhages are still unclear. Clinical studies have revealed controversial results; more robust and long-term clinical evaluations are necessary to define their outcomes. An alternative is to test the effect of these drugs in experimental models of intracerebral bleeding induced in animals. Aims To test new oral anticoagulants (dabigatran etexilate, rivaroxaban, and apixaban) in an experimental model of intracerebral hemorrhage induced by collagenase injection into the brain striatum of rats. Warfarin was used for comparison. Methods Ex vivo anticoagulant assays and an experimental model of venous thrombosis were employed to determine the doses and periods of time required for the anticoagulants to achieve their maximum effects. Subsequently, volumes of brain hematoma were evaluated after administration of the anticoagulants, using these same parameters. Volumes of brain hematoma were evaluated by magnetic resonance imaging, H&E (hematoxylin and eosin) staining, and Evans blue extravasation. Neuromotor function was assessed by the elevated body swing test. Results and Conclusions The new oral anticoagulants did not increase intracranial bleeding compared with control animals, while warfarin markedly favored expansion of the hematomas, as revealed by magnetic resonance imaging and H&E staining. Dabigatran etexilate caused a modest but statistically significant increase in Evans blue extravasation. We did not observe significant differences in elevated body swing tests among the experimental groups. The new oral anticoagulants may provide a better control over a brain hemorrhage than warfarin.

2.
Eur J Neurosci ; 53(2): 571-587, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32852090

RESUMO

Although it is known that nociceptive stimulation in the first postnatal week in rats is useful to model preterm pain, resulting in activation of specific brain areas, as assessed in vivo using manganese-enhanced magnetic resonance imaging (MEMRI), little is known about its long-term effects and sex specificity. Here we aimed to investigate whether inflammatory pain induced in male and female adult rats modify the pattern of brain activation between animals subjected or not to neonatal pain. For this, Complete Freund's adjuvant (CFA) was injected into the left hind paw of rat pups on postnatal day 1 (P1) or P8 to induce inflammatory response. During adulthood, CFA-treated and control animals were injected with CFA 1 hr prior MRI. MEMRI has the ability to enhance the contrast of selective brain structures in response to a specific stimulus, as the pain. MEMRI responses were consistent with activation of nociceptive pathways and these responses were reduced in animals treated with CFA on P1, but increased in animals treated on P8, mainly in the female group. In agreement, P8 female group showed exacerbated responses in the thermal nociceptive test. Using MEMRI, we conclude that the natural ability of adult rats to recognize and react to pain exposition is modified by neonatal painful exposition, mainly among females.


Assuntos
Manganês , Dor , Animais , Encéfalo/diagnóstico por imagem , Feminino , Adjuvante de Freund/toxicidade , Inflamação , Imageamento por Ressonância Magnética , Masculino , Manganês/toxicidade , Ratos
3.
Cell Transplant ; 28(9-10): 1306-1320, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31161782

RESUMO

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia-reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.


Assuntos
Líquido Amniótico/metabolismo , Comportamento Animal , Isquemia Encefálica , Transplante de Células-Tronco , Células-Tronco/metabolismo , Acidente Vascular Cerebral , Adulto , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Gravidez , Ratos , Ratos Wistar , Células-Tronco/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia
4.
Cell Transplant, v. 28, n. 9-10, p. 1306-1320, jun. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2856

RESUMO

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia–reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.

5.
Cell Transplant. ; 28(9-10): 1306–1320, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17239

RESUMO

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia–reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.

6.
Stem Cell Res Ther ; 9(1): 310, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413179

RESUMO

BACKGROUND: Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. METHODS/RESULTS: We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. CONCLUSIONS: Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/patologia , Tropismo , Animais , Neoplasias Encefálicas/ultraestrutura , Carcinogênese/metabolismo , Carcinogênese/patologia , Ensaios de Migração Celular , Proliferação de Células , Separação Celular , Quimiocinas/metabolismo , Glioblastoma/ultraestrutura , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/ultraestrutura , Modelos Biológicos , Células-Tronco Neoplásicas/ultraestrutura , Pontos Quânticos/metabolismo , Ratos Wistar , Receptores de Quimiocinas/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas
7.
Neuroimage Clin ; 20: 705-714, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30221622

RESUMO

Intravoxel Incoherent Motion (IVIM) is a recently rediscovered noninvasive magnetic resonance imaging (MRI) method based on diffusion-weighted imaging. It enables the separation of the intravoxel signal into diffusion due to Brownian motion and perfusion-related contributions and provides important information on microperfusion in the tissue and therefore it is a promising tool for applications in neurological and neurovascular diseases. This review focuses on the basic principles and outputs of IVIM and details it major applications in the brain, such as stroke, tumor, and cerebral small vessel disease. A bi-exponential model that considers two different compartments, namely capillaries, and medium-sized vessels, has been frequently used for the description of the IVIM signal and may be important in those clinical applications cited before. Moreover, the combination of IVIM and arterial spin labeling MRI enables the estimation of water permeability across the blood-brain barrier (BBB), suggesting a potential imaging biomarker for disrupted-BBB diseases.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Transtornos Cerebrovasculares/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Transtornos Cerebrovasculares/patologia , Humanos , Processamento de Imagem Assistida por Computador , Acidente Vascular Cerebral/patologia
8.
Oncotarget ; 9(31): 21731-21743, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29774098

RESUMO

BACKGROUND: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. RESULTS: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. CONCLUSIONS: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. METHODS: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

9.
J Stroke Cerebrovasc Dis ; 27(8): 2208-2213, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29735276

RESUMO

BACKGROUND AND PURPOSE: Muscle and bone form a functional unit. Residual physical poststroke impairments such as muscle weakness, spasticity, and decrease in function can promote metabolic bone changes. Moreover, muscle strength can influence this process. Thus, the purpose of the present study was to investigate bone volume and mobility performance in subjects with chronic hemiparesis post stroke. METHODS: A cross-sectional study was performed on 14 subjects post stroke who were paired with healthy controls. Bone volume, isometric muscle performance, and mobility levels were measured. Midfemoral bone volumes were determined using magnetic resonance imaging, and muscular performance was measured by dynamometry. Mobility was measured using the Timed Up and Go Test and the 10-Meter Walk Test. RESULTS: Regarding bone volume total, there was no difference in the medullary and cortical groups (P ≥ .05). During torque peak isometric flexion, the paretic group was significantly different compared with the other groups (P = .001). However, the control presented no difference compared with the nonparetic limb (P = .40). With regard to the extension isometric torque peak, the paretic limb was significantly different compared with the nonparetic (P = .033) and the control (P = .001) limbs, and the control was different from the nonparetic limb (P = .045). Bone volume variables correlated with the isometric torque peak. CONCLUSIONS: Chronic hemiparetic subjects maintain bone geometry compared with healthy volunteers matched by age, body mass index, and gender. The correlation between bone volume midfemoral structures and knee isometric torque was possible.


Assuntos
Fêmur/diagnóstico por imagem , Paresia/diagnóstico por imagem , Paresia/etiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Caminhada , Idoso , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/fisiopatologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/fisiopatologia , Doença Crônica , Estudos Transversais , Avaliação da Deficiência , Feminino , Fêmur/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Dinamômetro de Força Muscular , Tamanho do Órgão , Paresia/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Caminhada/fisiologia
10.
Oncotarget ; 9(31): p. 21731-21743, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15291

RESUMO

Background: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. Results: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. Conclusions: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. Methods: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

11.
Stem Cell Res Ther, v. 9, 310, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2601

RESUMO

Background Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. Methods/results We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. Conclusions Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.

12.
Oncotarget, v. 9, n. 31, p. 21731-21743, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2520

RESUMO

Background: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. Results: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. Conclusions: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. Methods: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

13.
Stem Cell Res. Ther. ; 9: 310, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15671

RESUMO

Background Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. Methods/results We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. Conclusions Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.

14.
Hum Brain Mapp ; 35(7): 3302-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25050426

RESUMO

Humans spend a substantial share of their lives mind-wandering. This spontaneous thinking activity usually comprises autobiographical recall, emotional, and self-referential components. While neuroimaging studies have demonstrated that a specific brain "default mode network" (DMN) is consistently engaged by the "resting state" of the mind, the relative contribution of key cognitive components to DMN activity is still poorly understood. Here we used fMRI to investigate whether activity in neural components of the DMN can be differentially explained by active recall of relevant emotional autobiographical memories as compared with the resting state. Our study design combined emotional autobiographical memory, neutral memory and resting state conditions, separated by a serial subtraction control task. Shared patterns of activation in the DMN were observed in both emotional autobiographical and resting conditions, when compared with serial subtraction. Directly contrasting autobiographical and resting conditions demonstrated a striking dissociation within the DMN in that emotional autobiographical retrieval led to stronger activation of the dorsomedial core regions (medial prefrontal cortex, posterior cingulate cortex), whereas the resting state condition engaged a ventral frontal network (ventral striatum, subgenual and ventral anterior cingulate cortices) in addition to the IPL. Our results reveal an as yet unreported dissociation within the DMN. Whereas the dorsomedial component can be explained by emotional autobiographical memory, the ventral frontal one is predominantly associated with the resting state proper, possibly underlying fundamental motivational mechanisms engaged during spontaneous unconstrained ideation.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Emoções , Memória Episódica , Rememoração Mental/fisiologia , Adulto , Córtex Cerebral/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Vias Neurais/irrigação sanguínea , Vias Neurais/fisiologia , Oxigênio/sangue , Fatores de Tempo , Adulto Jovem
15.
PLoS One ; 8(12): e81658, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312569

RESUMO

The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.


Assuntos
Interfaces Cérebro-Computador , Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Neurorretroalimentação/métodos , Interface Usuário-Computador , Adulto , Mapeamento Encefálico , Emoções , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Análise Multivariada , Máquina de Vetores de Suporte , Fatores de Tempo
16.
J Neurosci ; 32(36): 12499-505, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22956840

RESUMO

Comparative studies have established that a number of structures within the rostromedial basal forebrain are critical for affiliative behaviors and social attachment. Lesion and neuroimaging studies concur with the importance of these regions for attachment and the experience of affiliation in humans as well. Yet it remains obscure whether the neural bases of affiliative experiences can be differentiated from the emotional valence with which they are inextricably associated at the experiential level. Here we show, using functional MRI, that kinship-related social scenarios evocative of affiliative emotion induce septal-preoptic-anterior hypothalamic activity that cannot be explained by positive or negative emotional valence alone. Our findings suggest that a phylogenetically conserved ensemble of basal forebrain structures, especially the septohypothalamic area, may play a key role in enabling human affiliative emotion. Our finding of a neural signature of human affiliative experience bears direct implications for the neurobiological mechanisms underpinning impaired affiliative experiences and behaviors in neuropsychiatric conditions.


Assuntos
Emoções/fisiologia , Hipotálamo Anterior/fisiologia , Septo do Cérebro/fisiologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Projetos Piloto , Adulto Jovem
17.
Epilepsia ; 53(7): 1225-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22642664

RESUMO

PURPOSE: Mossy fiber sprouting (MFS) is a frequent finding following status epilepticus (SE). The present study aimed to test the feasibility of using manganese-enhanced magnetic resonance imaging (MEMRI) to detect MFS in the chronic phase of the well-established pilocarpine (Pilo) rat model of temporal lobe epilepsy (TLE). METHODS: To modulate MFS, cycloheximide (CHX), a protein synthesis inhibitor, was coadministered with Pilo in a subgroup of animals. In vivo MEMRI was performed 3 months after induction of SE and compared to the neo-Timm histologic labeling of zinc mossy fiber terminals in the dentate gyrus (DG). KEY FINDINGS: Chronically epileptic rats displaying MFS as detected by neo-Timm histology had a hyperintense MEMRI signal in the DG, whereas chronically epileptic animals that did not display MFS had minimal MEMRI signal enhancement compared to nonepileptic control animals. A strong correlation (r = 0.81, p < 0.001) was found between MEMRI signal enhancement and MFS. SIGNIFICANCE: This study shows that MEMRI is an attractive noninvasive method for detection of mossy fiber sprouting in vivo and can be used as an evaluation tool in testing therapeutic approaches to manage chronic epilepsy.


Assuntos
Epilepsia/patologia , Hipocampo/patologia , Imageamento por Ressonância Magnética , Manganês , Fibras Musgosas Hipocampais/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Cicloeximida/administração & dosagem , Modelos Animais de Doenças , Interações Medicamentosas , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Masculino , Fibras Musgosas Hipocampais/patologia , Agonistas Muscarínicos/toxicidade , Pilocarpina/toxicidade , Inibidores da Síntese de Proteínas/administração & dosagem , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Tiopental/farmacologia , Tiopental/uso terapêutico
18.
Transl Stroke Res ; 3(1): 44-55, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24323754

RESUMO

Collateral circulation, defined as the supplementary vascular network that maintains cerebral blood flow (CBF) when the main vessels fail, constitutes one important defense mechanism of the brain against ischemic stroke. In the present study, continuous arterial spin labeling (CASL) was used to quantify CBF and obtain perfusion territory maps of the major cerebral arteries in spontaneously hypertensive rats (SHRs) and their normotensive Wistar-Kyoto (WKY) controls. Results show that both WKY and SHR have complementary, yet significantly asymmetric perfusion territories. Right or left dominances were observed in territories of the anterior (ACA), middle and posterior cerebral arteries, and the thalamic artery. Magnetic resonance angiography showed that some of the asymmetries were correlated with variations of the ACA. The leptomeningeal circulation perfusing the outer layers of the cortex was observed as well. Significant and permanent changes in perfusion territories were obtained after temporary occlusion of the right middle cerebral artery in both SHR and WKY, regardless of their particular dominance. However, animals with right dominance presented a larger volume change of the left perfusion territory (23 ± 9%) than animals with left dominance (7 ± 5%, P < 0.002). The data suggest that animals with contralesional dominance primarily safeguard local CBF values with small changes in contralesional perfusion territory, while animals with ipsilesional dominance show a reversal of dominance and a substantial increase in contralesional perfusion territory. These findings show the usefulness of CASL to probe the collateral circulation.

19.
Neuroimage ; 58(1): 75-81, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21708273

RESUMO

Hypertension afflicts 25% of the general population and over 50% of the elderly. In the present work, arterial spin labeling MRI was used to non-invasively quantify regional cerebral blood flow (CBF), cerebrovascular resistance and CO(2) reactivity in spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY), at two different ages (3 months and 10 months) and under the effects of two anesthetics, α-chloralose and 2% isoflurane (1.5 MAC). Repeated CBF measurements were highly consistent, differing by less than 10% and 18% within and across animals, respectively. Under α-chloralose, whole brain CBF at normocapnia did not differ between groups (young WKY: 61 ± 3ml/100g/min; adult WKY: 62 ± 4ml/100g/min; young SHR: 70 ± 9ml/100g/min; adult SHR: 69 ± 8ml/100g/min), indicating normal cerebral autoregulation in SHR. At hypercapnia, CBF values increased significantly, and a linear relationship between CBF and PaCO(2) levels was observed. In contrast, 2% isoflurane impaired cerebral autoregulation. Whole brain CBF in SHR was significantly higher than in WKY rats at normocapnia (young SHR: 139 ± 25ml/100g/min; adult SHR: 104 ± 23ml/100g/min; young WKY: 55± 9ml/100g/min; adult WKY: 71 ± 19ml/100g/min). CBF values increased significantly with increasing CO(2); however, there was a clear saturation of CBF at PaCO(2) levels greater than 70mmHg in both young and adult rats, regardless of absolute CBF values, suggesting that isoflurane interferes with the vasodilatory mechanisms of CO(2). This behavior was observed for both cortical and subcortical structures. Under either anesthetic, CO(2) reactivity values in adult SHR were decreased, confirming that hypertension, when combined with age, increases cerebrovascular resistance and reduces cerebrovascular compliance.


Assuntos
Dióxido de Carbono/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Hipertensão/fisiopatologia , Envelhecimento/fisiologia , Anestesia , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Animais , Dióxido de Carbono/sangue , Cloralose/farmacologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Isoflurano/farmacologia , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Marcadores de Spin , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia
20.
Methods Mol Biol ; 489: 277-95, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18839097

RESUMO

Modern functional neuroimaging techniques, including positron emission tomography, optical imaging of intrinsic signals, and magnetic resonance imaging (MRI) rely on a tight coupling between neural activity and cerebral blood flow (CBF) to visualize brain activity using CBF as a surrogate marker. Because the spatial and temporal resolution of neuroimaging modalities is ultimately determined by the spatial and temporal specificity of the underlying hemodynamic signals, characterization of the spatial and temporal profiles of the hemodynamic response to focal brain stimulation is of paramount importance for the correct interpretation and quantification of functional data. The ability to properly measure and quantify CBF with MRI is a major determinant of progress in our understanding of brain function. We review the dynamic arterial spin labeling (DASL) method to measure CBF and the CBF functional response with high temporal resolution.


Assuntos
Artérias/fisiologia , Circulação Cerebrovascular , Imageamento por Ressonância Magnética/métodos , Marcadores de Spin , Animais , Modelos Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...