Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207246

RESUMO

Previous studies showed that aphid performance was compromised on Brassica nigra infected by root-lesion nematodes (Pratylenchus penetrans, Pp), but less, or positively influenced by root-knot nematode (Meloidogyne spp., Mi) infection. These experiments were on single-nematode infections, while naturally, roots are infected with several nematode species simultaneously. We performed greenhouse assays to assess the effects of single (Mi, Pp) and concurrent (MP)-nematode infections on aphid performance. Using targeted and untargeted profiling of leaf and phloem metabolomes, we examined how single- and concurrent-nematode infections affect shoot metabolomes, and elucidated the possible consequences on aphid performance. We found that the metabolic response towards double-infection is different from single-species infections. Moreover, Mi- and Pp-infections triggered discrete changes in B. nigra leaf and phloem metabolic profiles. Both Pp and MP-infections reduced aphid survival, suggesting that the biological effect could primarily be dominated by Pp-induced changes. This concurred with increased indole glucosinolates and hydroxycinnamic acid levels in the leaves, in particular the putative involvement of salicylic acid-2-O-ß-D-glucoside. This study provides evidence that concurrent infection by different nematode species, as is common in natural environments, is associated with distinct changes in aboveground plant metabolomes, which are linked to differences in the survival of an aboveground herbivore.

2.
Front Plant Sci ; 12: 713870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456953

RESUMO

Anticipating an increased ecological awareness, scientists have been exploring new strategies to reduce the use of chemical pesticides to control pests and diseases. Triggering the intrinsic plant defense system is one of the promising strategies to reduce yield loss by pathogenic organisms, such as nematodes. Ascorbate oxidase (AO) enzyme plays an important role in plant defense by regulating the apoplastic ascorbate/dehydroascorbate (DHA) ratio via the ascorbate oxidation process. Ascorbate oxidation is known to induce systemic resistance in rice against parasitic root-knot nematodes (RKN). Here, we sought to evaluate if AO- or DHA-induced resistance (IR) against RKN M. graminicola involves activation of the phenylpropanoid pathway and whether this IR phenotype has potential effects on growth of rice seedlings under stressed and unstressed conditions. Our results show that AO/DHA-IR against these parasitic nematodes is dependent on activation of phenylalanine ammonia lyase (PAL). However, application of reduced ascorbic acid (AA) did not induce this response. Gene expression analysis via qRT-PCR showed that OsPAL2 and OsPAL4 are highly expressed in AO/DHA-sprayed nematode-infected roots and PAL-activity measurements confirmed that AO/DHA spraying triggers the plants for primed activation of this enzyme upon nematode infection. AO/DHA-IR is not effective in plants sprayed with a chemical PAL inhibitor confirming that AO/DHA-induced resistance is dependent on PAL activity. Improved plant growth and low nematode infection in AO/DHA-sprayed plants was found to be correlated with an increase in shoot chlorophyll fluorescence (Fv/Fm), chlorophyll index (ChlIdx), and modified anthocyanin reflection index which were proven to be good above-ground parameters for nematode infestation. A detailed growth analysis confirmed the improved growth of AO/DHA-treated plants under nematode-infected conditions. Taken together, our results indicate that ascorbate oxidation enhances the phenylpropanoid-based response to nematode infection and leads to a tolerance phenotype in treated rice plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA