Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 26(9): 2891-2903, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30869621

RESUMO

Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set.

2.
IEEE Trans Vis Comput Graph ; 26(2): 1292-1307, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30235135

RESUMO

Developing complex, real world graphics applications which leverage multiple GPUs and computers for interactive 3D rendering tasks is a complex task. It requires expertise in distributed systems and parallel rendering in addition to the application domain itself. We present a mature parallel rendering framework which provides a large set of features, algorithms and system integration for a wide range of real-world research and industry applications. Using the Equalizer parallel rendering framework, we show how a wide set of generic algorithms can be integrated in the framework to help application scalability and development in many different domains, highlighting how concrete applications benefit from the diverse aspects and use cases of Equalizer. We present novel parallel rendering algorithms, powerful abstractions for large visualization setups and virtual reality, as well as new experimental results for parallel rendering and data distribution.

3.
IEEE Trans Vis Comput Graph ; 25(2): 1435-1446, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29994512

RESUMO

Histograms are a fundamental tool for multidimensional data analysis and processing, and many applications in graphics and visualization rely on computing histograms over large regions of interest (ROI). Integral histograms (IH) greatly accelerate the calculation in the case of rectangular regions, but come at a large extra storage cost. Based on the tensor train decomposition model, we propose a new compression and approximate retrieval algorithm to reduce the overall IH memory usage by several orders of magnitude at a user-defined accuracy. To this end we propose an incremental tensor decomposition algorithm that allows us to compress integral histograms of hundreds of gigabytes. We then encode the borders of any desired rectangular ROI in the IH tensor-compressed domain and reconstruct the target histogram at a high speed which is independent of the region size. We furthermore generalize the algorithm to support regions of arbitrary shape rather than only rectangles, as well as histogram field computation, i.e., recovering many histograms at once. We test our method with several multidimensional data sets and demonstrate that it radically speeds up costly histogram queries while avoiding storing massive, uncompressed IHs.

4.
IEEE Trans Vis Comput Graph ; 24(10): 2714-2727, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29990168

RESUMO

Signal processing and filter operations are important tools for visual data processing and analysis. Due to GPU memory and bandwidth limitations, it is challenging to apply complex filter operators to large-scale volume data interactively. We propose a novel and fast multiscale compression-domain volume filtering approach integrated into an interactive multiresolution volume visualization framework. In our approach, the raw volume data is decomposed offline into a compact hierarchical multiresolution tensor approximation model. We then demonstrate how convolution filter operators can effectively be applied in the compressed tensor approximation domain. To prevent aliasing due to multiresolution filtering, our solution (a) filters accurately at the full spatial volume resolution at a very low cost in the compressed domain, and (b) reconstructs and displays the filtered result at variable level-of-detail. The proposed system is scalable, allowing interactive display and filtering of large volume datasets that may exceed the available GPU memory. The desired filter kernel mask and size can be modified online, producing immediate visual results.

6.
IEEE Trans Vis Comput Graph ; 17(12): 1795-802, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22034296

RESUMO

Direct volume rendering has become a popular method for visualizing volumetric datasets. Even though computers are continually getting faster, it remains a challenge to incorporate sophisticated illumination models into direct volume rendering while maintaining interactive frame rates. In this paper, we present a novel approach for advanced illumination in direct volume rendering based on GPU ray-casting. Our approach features directional soft shadows taking scattering into account, ambient occlusion and color bleeding effects while achieving very competitive frame rates. In particular, multiple dynamic lights and interactive transfer function changes are fully supported. Commonly, direct volume rendering is based on a very simplified discrete version of the original volume rendering integral, including the development of the original exponential extinction into a-blending. In contrast to a-blending forming a product when sampling along a ray, the original exponential extinction coefficient is an integral and its discretization a Riemann sum. The fact that it is a sum can cleverly be exploited to implement volume lighting effects, i.e. soft directional shadows, ambient occlusion and color bleeding. We will show how this can be achieved and how it can be implemented on the GPU.

7.
IEEE Trans Vis Comput Graph ; 17(12): 2135-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22034332

RESUMO

Large scale and structurally complex volume datasets from high-resolution 3D imaging devices or computational simulations pose a number of technical challenges for interactive visual analysis. In this paper, we present the first integration of a multiscale volume representation based on tensor approximation within a GPU-accelerated out-of-core multiresolution rendering framework. Specific contributions include (a) a hierarchical brick-tensor decomposition approach for pre-processing large volume data, (b) a GPU accelerated tensor reconstruction implementation exploiting CUDA capabilities, and (c) an effective tensor-specific quantization strategy for reducing data transfer bandwidth and out-of-core memory footprint. Our multiscale representation allows for the extraction, analysis and display of structural features at variable spatial scales, while adaptive level-of-detail rendering methods make it possible to interactively explore large datasets within a constrained memory footprint. The quality and performance of our prototype system is evaluated on large structurally complex datasets, including gigabyte-sized micro-tomographic volumes.


Assuntos
Gráficos por Computador , Imageamento Tridimensional/estatística & dados numéricos , Algoritmos , Animais , Simulação por Computador , Bases de Dados Factuais , Hominidae/anatomia & histologia , Lagartos/anatomia & histologia , Modelos Anatômicos , Dente Molar/anatomia & histologia , Microtomografia por Raio-X/estatística & dados numéricos
8.
IEEE Trans Vis Comput Graph ; 15(3): 436-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19282550

RESUMO

Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.


Assuntos
Gráficos por Computador , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Software , Interface Usuário-Computador , Algoritmos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
IEEE Trans Vis Comput Graph ; 10(3): 353-68, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-18579965

RESUMO

In this paper, we present an efficient (topology preserving) multiresolution meshing framework for interactive level-of-detail (LOD) generation and rendering of large triangle meshes. More specifically, the presented approach, called FastMesh, provides view-dependent LOD generation and real-time mesh simplification that minimizes visual artifacts. Multiresolution triangle mesh representations are an important tool for reducing triangle mesh complexity in interactive rendering environments. Ideally, for interactive visualization, a triangle mesh is simplified to the maximal tolerated visible error and, thus, mesh simplification is view-dependent. This paper introduces an efficient hierarchical multiresolution triangulation framework based on a half-edge triangle mesh data structure and presents optimized implementations of several view-dependent or visual mesh simplification heuristics within that framework. Despite being optimized for performance, these error heuristics provide conservative error bounds. The presented framework is highly efficient both in space and time cost and needs only a fraction of the time required for rendering to perform the error calculations and dynamic mesh updates.


Assuntos
Algoritmos , Gráficos por Computador , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Sistemas Computacionais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
IEEE Trans Vis Comput Graph ; 10(5): 598-608, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15794141

RESUMO

In this paper, we present Confetti, a novel point-based rendering approach based on object-space point interpolation of densely sampled surfaces. We introduce the concept of a transformation-invariant covariance matrix of a set of points which can efficiently be used to determine splat sizes in a multiresolution point hierarchy. We also analyze continuous point interpolation in object-space and we define a new class of parameterized blending kernels as well as a normalization procedure to achieve smooth blending. Furthermore, we present a hardware accelerated rendering algorithm based on texture mapping and alpha-blending as well as programmable vertex and pixel-shaders.


Assuntos
Inteligência Artificial , Gráficos por Computador , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Processamento de Sinais Assistido por Computador , Interface Usuário-Computador , Algoritmos , Aumento da Imagem/métodos , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...