Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552261

RESUMO

Coexistence impact of pollutants of different nature on halophytes tolerance to metal excess has not been thoroughly examined, and plant functional responses described so far do not follow a clear pattern. Using the Cu-tolerant halophyte Sarcocornia fruticosa as a model species, we conducted a greenhouse experiment to evaluate the impact of two concentration of copper (0 and 12 mM CuSO4) in combination with three nitrate levels (2, 14 and 50 mM KNO3) on plant growth, photosynthetic apparatus performance and ROS-scavenging enzymes system. The results revealed that S. fruticosa was able to grow adequately even when exposed to high concentrations of copper and nitrate. This response was linked to the plant capacity to uptake and retain a large amount of copper in its roots (up to 1500 mg kg-1 Cu), preventing its transport to aerial parts. This control of translocation was further magnified with nitrate concentration increment. Likewise, although Cu excess impaired S. fruticosa carbon assimilation capacity, the plant was able to downregulate its light-harvesting complexes function, as indicated its lowers ETR values, especially at 12 mM Cu + 50 mM NO3. This downregulation would contribute to avoid excess energy absorption and transformation. In addition, this strategy of avoiding excess energy was accompanied by the upregulation of all ROS-scavenging enzymes, a response that was further enhanced by the increase in nitrate concentration. Therefore, we conclude that the coexistence of nitrate would favor S. fruticosa tolerance to copper excess, and this effect is mediated by the combined activation of several tolerance mechanisms.


Assuntos
Cobre , Nitratos , Plantas Tolerantes a Sal , Cobre/metabolismo , Cobre/toxicidade , Nitratos/metabolismo , Nitratos/farmacologia , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Aizoaceae/metabolismo , Aizoaceae/efeitos dos fármacos , Aizoaceae/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos
2.
Front Plant Sci ; 14: 1243509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780506

RESUMO

The use of microorganisms as a biofertilizer in strawberry has focused mainly on pathogen biocontrol, which has led to the underestimation of the potential of microorganisms for the improvement of nutritional efficiency in this crop. A study was established to investigate the impact of a plant growth-promoting rhizobacteria (PGPR) based biofertilizer integrated by self-compatible stress tolerant strains with multiple PGP properties, including atmospheric nitrogen fixation, on strawberry (Fragaria × ananassa cv. Rociera) tolerance to N deficiency in terms of growth and physiological performance. After 40 days of nitrogen fertilization shortage, inoculated plants were able to maintain root development and fertility structures (i.e. fruits and flowers) at a level similar to plants properly fertilized. In addition, inoculation lessened the negative impact of nitrogen deficiency on leaves' dry weight and relative water content. This effect was mediated by a higher root/shoot ratio, which would have allowed them to explore larger volumes of soil for the acquisition of water. Moreover, inoculation was able to buffer up to 50% of the reduction in carbon assimilation capacity, due to its positive effect on the diffusion efficiency of CO2 and the biochemical capacity of photosynthesis, as well as on the activity of photosystem II light harvesting. Furthermore, the higher leaf C/N ratio and the maintained δ15N values close to control plants were related to positive bacterial effects at the level of the plant nutritional balance. Despite these positive effects, the application of the bacterial inoculum was unable to completely counteract the restriction of fertilization, being necessary to apply a certain amount of synthetic fertilizer for the strawberry nutrition. However, according to our results, the complementary effect of this PGPR-based biofertilizer could provide a higher efficiency in environmental and economic yields on this crop.

3.
Biomacromolecules ; 24(11): 4743-4758, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37677155

RESUMO

This research work proposes a synergistic approach to improve implants' performance through the use of porous Ti substrates to reduce the mismatch between Young's modulus of Ti (around 110 GPa) and the cortical bone (20-25 GPa), and the application of a biodegradable, acrylic acid-based polymeric coating to reduce bacterial adhesion and proliferation, and to enhance osseointegration. First, porous commercially pure Ti substrates with different porosities and pore size distributions were fabricated by using space-holder techniques to obtain substrates with improved tribomechanical behavior. On the other hand, a new diacrylate cross-linker containing a reduction-sensitive disulfide bond was synthesized to prepare biodegradable poly(acrylic acid)-based hydrogels with 1, 2, and 4% cross-linker. Finally, after the required characterization, both strategies were implemented, and the combination of 4% cross-linked poly(acrylic acid)-based hydrogel infiltrated in 30 vol % porosity, 100-200 µm average pore size, was revealed as an outstanding choice for enhancing implant performance.


Assuntos
Próteses e Implantes , Titânio , Porosidade , Titânio/química , Resinas Acrílicas
4.
Plants (Basel) ; 12(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447093

RESUMO

Rice is one of the most important crops in the world and is considered a strategic crop for food security. Furthermore, the excessive use of chemical fertilizers to obtain high yields causes environmental problems. A sustainable alternative includes taking advantage of beneficial bacteria that promote plant growth. Here, we investigate the effect of five bacterial biofertilizers from halophytes on growth, and we investigate photosynthetic efficiency in rice plants grown under saline conditions (0 and 85 mmol L-1 NaCl) and future climate change scenarios, including increased CO2 concentrations and temperature (400/700 ppm and 25/+4 °C, respectively). Biofertilizers 1-4 increased growth by 9-64% in plants grown with and without salt in both CO2- temperature combinations, although there was no significant positive effect on the net photosynthetic rate of rice plants. In general, biofertilizer 1 was the most effective at 400 ppm CO2 and at 700 ppm CO2 +4 °C in the absence of salt. Inocula 1-5 also stimulated plant length at high CO2 levels without salt. Finally, the positive effect of biofertilization was attenuated in the plants grown under the interaction between salt and high CO2. This highlights the significance of studying biofertilization under stress interaction to establish the real potential of biofertilizers in the context of climate change conditions.

5.
Plants (Basel) ; 12(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447105

RESUMO

According to the EU, the global consumption of biomass, fossil fuels, metals, and minerals is expected to double by 2050, while waste will increase by 70%. In this context, the Circular Economy Action Plan (CEAP) intends to integrate development and sustainability. In this regard, tailored biofertilizers based on plant growth-promoting bacteria (PGPB) can improve plant yield with fewer inputs. In our project, an autochthonous halophyte of the Andalusian marshes, namely Mesembryanthemum crystallinum, was selected for its interest as a source of pharmaceuticals and nutraceuticals. The aim of this work was to use a culturomics approach for the isolation of specific PGPB and endophytes able to promote plant growth and, eventually, modulate the metabolome of the plant. For this purpose, a specific culture medium based on M. crystallinum biomass, called Mesem Agar (MA), was elaborated. Bacteria of three compartments (rhizosphere soil, root endophytes, and shoot endophytes) were isolated on standard tryptone soy agar (TSA) and MA in order to obtain two independent collections. A higher number of bacteria were isolated on TSA than in MA (47 vs. 37). All the bacteria were identified, and although some of them were isolated in both media (Pseudomonas, Bacillus, Priestia, Rosellomorea, etc.), either medium allowed the isolation of specific members of the M. crystallinum microbiome such as Leclercia, Curtobacterium, Pantoea, Lysinibacillus, Mesobacillus, Glutamicibacter, etc. Plant growth-promoting properties and extracellular degrading activities of all the strains were determined, and distinct patterns were found in both media. The three best bacteria of each collection were selected in order to produce two different consortia, whose effects on seed germination, root colonization, plant growth and physiology, and metabolomics were analyzed. Additionally, the results of the plant metabolome revealed a differential accumulation of several primary and secondary metabolites with pharmaceutical properties. Overall, the results demonstrated the feasibility of using "low cost media" based on plant biomass to carry out a culturomics approach in order to isolate the most suitable bacteria for biofertilizers. In this way, a circular model is established in which bacteria help plants to grow, and, in turn, a medium based on plant wastes supports bacterial growth at low prices, which is the reason why this approach can be considered within the model of "circular agronomy".

6.
Plants (Basel) ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299063

RESUMO

Estuaries are ecologically important ecosystems particularly affected by climate change and human activities. Our interest is focused on the use of legumes to fight against the degradation of estuarine soils and loss of fertility under adverse conditions. This work was aimed to determine the potential of a nodule synthetic bacterial community (SynCom), including two Ensifer sp. and two Pseudomonas sp. strains isolated from Medicago spp. nodules, to promote M. sativa growth and nodulation in degraded estuarine soils under several abiotic stresses, including high metal contamination, salinity, drought and high temperature. These plant growth promoting (PGP) endophytes were able to maintain and even increase their PGP properties in the presence of metals. Inoculation with the SynCom in pots containing soil enhanced plant growth parameters (from 3- to 12-fold increase in dry weight), nodulation (from 1.5- to 3-fold increase in nodules number), photosynthesis and nitrogen content (up to 4-fold under metal stress) under all the controlled conditions tested. The increase in plant antioxidant enzymatic activities seems to be a common and important mechanism of plant protection induced by the SynCom under abiotic stress conditions. The SynCom increased M. sativa metals accumulation in roots, with low levels of metals translocation to shoots. Results indicated that the SynCom used in this work is an appropriate ecological and safe tool to improve Medicago growth and adaptation to degraded estuarine soils under climate change conditions.

7.
Antioxidants (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237989

RESUMO

Adolescence is a period during which body composition changes deeply. Selenium (Se) is an excellent antioxidant trace element related to cell growth and endocrine function. In adolescent rats, low Se supplementation affects adipocyte development differently depending on its form of administration (selenite or Se nanoparticles (SeNPs). Despite this effect being related to oxidative, insulin-signaling and autophagy processes, the whole mechanism is not elucidated. The microbiota-liver-bile salts secretion axis is related to lipid homeostasis and adipose tissue development. Therefore, the colonic microbiota and total bile salts homeostasis were explored in four experimental groups of male adolescent rats: control, low-sodium selenite supplementation, low SeNP supplementation and moderate SeNPs supplementation. SeNPs were obtained by reducing Se tetrachloride in the presence of ascorbic acid. Supplementation was received orally through water intake; low-Se rats received twice more Se than control animals and moderate-Se rats tenfold more. Supplementation with low doses of Se clearly affected anaerobic colonic microbiota profile and bile salts homeostasis. However, these effects were different depending on the Se administration form. Selenite supplementation primarily affected liver by decreasing farnesoid X receptor hepatic function, leading to the accumulation of hepatic bile salts together to increase in the ratio Firmicutes/Bacteroidetes and glucagon-like peptide-1 (GLP-1) secretion. In contrast, low SeNP levels mainly affected microbiota, moving them towards a more prominent Gram-negative profile in which the relative abundance of Akkermansia and Muribaculaceae was clearly enhanced and the Firmicutes/Bacteroidetes ratio decreased. This bacterial profile is directly related to lower adipose tissue mass. Moreover, low SeNP administration did not modify bile salts pool in serum circulation. In addition, specific gut microbiota was regulated upon administration of low levels of Se in the forms of selenite or SeNPs, which are properly discussed. On its side, moderate-SeNPs administration led to great dysbiosis and enhanced the abundance of pathogenic bacteria, being considered toxic. These results strongly correlate with the deep change in adipose mass previously found in these animals, indicating that the microbiota-liver-bile salts axis is also mechanistically involved in these changes.

8.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108166

RESUMO

Plant-growth-promoting bacteria (PGPB) help plants thrive in polluted environments and increase crops yield using fewer inputs. Therefore, the design of tailored biofertilizers is of the utmost importance. The purpose of this work was to test two different bacterial synthetic communities (SynComs) from the microbiome of Mesembryanthemum crystallinum, a moderate halophyte with cosmetic, pharmaceutical, and nutraceutical applications. The SynComs were composed of specific metal-resistant plant-growth-promoting rhizobacteria and endophytes. In addition, the possibility of modulating the accumulation of nutraceutical substances by the synergetic effect of metal stress and inoculation with selected bacteria was tested. One of the SynComs was isolated on standard tryptone soy agar (TSA), whereas the other was isolated following a culturomics approach. For that, a culture medium based on M. crystallinum biomass, called Mesem Agar (MA), was elaborated. Bacteria of three compartments (rhizosphere soil, root endophytes, and shoot endophytes) were isolated on standard TSA and MA media, stablishing two independent collections. All bacteria were tested for PGP properties, secreted enzymatic activities, and resistance towards As, Cd, Cu, and Zn. The three best bacteria from each collection were selected in order to produce two different consortiums (denominated TSA- and MA-SynComs, respectively), whose effect on plant growth and physiology, metal accumulation, and metabolomics was evaluated. Both SynComs, particularly MA, improved plant growth and physiological parameters under stress by a mixture of As, Cd, Cu, and Zn. Regarding metal accumulation, the concentrations of all metals/metalloids in plant tissues were below the threshold for plant metal toxicity, indicating that this plant is able to thrive in polluted soils when assisted by metal/metalloid-resistant SynComs and could be safely used for pharmaceutical purposes. Initial metabolomics analyses depict changes in plant metabolome upon exposure to metal stress and inoculation, suggesting the possibility of modulating the concentration of high-value metabolites. In addition, the usefulness of both SynComs was tested in a crop plant, namely Medicago sativa (alfalfa). The results demonstrate the effectiveness of these biofertilizers in alfalfa, improving plant growth, physiology, and metal accumulation.


Assuntos
Arsênio , Mesembryanthemum , Metais Pesados , Poluentes do Solo , Arsênio/metabolismo , Mesembryanthemum/metabolismo , Cádmio/metabolismo , Ágar , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Metais Pesados/metabolismo , Bactérias , Endófitos/metabolismo , Suplementos Nutricionais/análise , Preparações Farmacêuticas/metabolismo , Poluentes do Solo/metabolismo , Solo
9.
Microorganisms ; 11(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37110279

RESUMO

Amid climate change, heatwave events are expected to increase in frequency and severity. As a result, yield losses in viticulture due to heatwave stress have increased over the years. As one of the most important crops in the world, an eco-friendly stress mitigation strategy is greatly needed. The present work aims to evaluate the physiological fitness improvement by two marine plant growth-promoting rhizobacteria consortia in Vitis vinifera cv. Antão Vaz under heatwave conditions. To assess the potential biophysical and biochemical thermal stress feedback amelioration, photochemical traits, pigment and fatty acid profiles, and osmotic and oxidative stress biomarkers were analysed. Bioaugmented grapevines exposed to heatwave stress presented a significantly enhanced photoprotection capability and higher thermo-stability, exhibiting a significantly lower dissipation energy flux than the non-inoculated plants. Additionally, one of the rhizobacterial consortia tested improved light-harvesting capabilities by increasing reaction centre availability and preserving photosynthetic efficiency. Rhizobacteria inoculation expressed an osmoprotectant promotion, revealed by the lower osmolyte concentration while maintaining leaf turgidity. Improved antioxidant mechanisms and membrane stability resulted in lowered lipid peroxidation product formation when compared to non-inoculated plants. Although the consortia were found to differ significantly in their effectiveness, these findings demonstrate that bioaugmentation induced significant heatwave stress tolerance and mitigation. This study revealed the promising usage of marine PGPR consortia to promote plant fitness and minimize heatwave impacts in grapevines.

11.
Antibiotics (Basel) ; 11(12)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36551456

RESUMO

The spread of antibiotic resistance among human and animal pathogens is one of the more significant public health concerns. Moreover, the restrictions on the use of particular antibiotics can limit the options for the treatment of infections in veterinary clinical practice. In this context, searching for alternative antimicrobial substances is crucial nowadays. In this study, 4,4'-dihydroxy-azobenzene (DHAB) was tested for its potential in vitro as an antimicrobial agent against two relevant human and animal pathogens, namely Staphylococcus aureus and Staphylococcus pseudintermedius. The values of minimal inhibitory concentration (MIC) were 64 and 32 mg/L respectively, and they comparable to other azo compounds of probed antimicrobial activity. In addition, the minimal bactericidal concentrations (MCB) were 256 and 64 mg/L. The mechanism by which DHAB produces toxicity in staphylococci has been investigated. DHAB caused membrane damage as revealed by the increase in thiobarbituric acid reactive substances (TBARS) such as malondialdehyde. Furthermore, differential induction of the enzymes peroxidases and superoxide dismutase in S. aureus and S. pseudintermedius suggested their prevalent role in ROS-scavenging due to the oxidative burst induced by this compound in either species. In addition, this substance was able to inhibit the formation of biofilms by both bacteria as observed by colorimetric tests and scanning electron microscopy. In order to assess the relevance of DHAB against clinical strains of MRSA, 10 clinical isolates resistant to either methicillin or daptomycin were assayed; 80% of them gave values of CMI and CMB similar to those of the control S. aureus strain. Finally, cutaneous plasters containing a composite formed by an agar base supplemented with DHAB were designed. These plasters were able to inhibit in vitro the growth of S. aureus and S. pseudintermedius, particularly the later, and this suggests that this substance could be a promising candidate as an alternative to antibiotics in the treatment of animal skin infections, as it has been proven that the toxicity of this substance is very low particularly at a dermal level.

12.
Front Microbiol ; 13: 1005458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338056

RESUMO

The joint estuary of Tinto and Odiel rivers (SW Spain) is one of the most degraded and polluted areas in the world and its recovery is mandatory. Legumes and their associated bacteria are recommended sustainable tools to fight against soils degradation and loss of fertility due to their known positive impacts on soils. The aim of this work was to isolate and characterize plant growth promoting nodule endophytes (PGPNE) from inside nodules of Medicago spp. naturally growing in the estuary of the Tinto and Odiel Rivers and evaluate their ability to promote legume adaptation in degraded soils. The best rhizobia and non-rhizobia among 33 endophytes were selected based on their plant growth promoting properties and bacterial enzymatic activities. These strains, identified as Pseudomonas sp. N4, Pseudomonas sp. N8, Ensifer sp. N10 and Ensifer sp. N12, were used for in vitro studies using Medicago sativa plants. The effects of individual or combined inoculation on seed germination, plant growth and nodulation were studied, both on plates and pots containing nutrient-poor soils and moderately contaminated with metals/loids from the estuary. In general, inoculation with combinations of rhizobia and Pseudomonas increased plant biomass (up to 1.5-fold) and nodules number (up to 2-fold) compared to single inoculation with rhizobia, ameliorating the physiological state of the plants and helping to regulate plant stress mechanisms. The greatest benefits were observed in plants inoculated with the consortium containing the four strains. In addition, combined inoculation with Ensifer and Pseudomonas increased As and metals accumulation in plant roots, without significant differences in shoot metal accumulation. These results suggest that PGPNE are useful biotools to promote legume growth and phytostabilization potential in nutrient-poor and/or metals contaminated estuarine soils.

13.
Nutrients ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079831

RESUMO

Adolescence is a period of intense growth and endocrine changes, and obesity and insulin-resistance processes during this period have lately been rising. Selenium (Se) homeostasis is related to lipid metabolism depending on the form and dose of Se. This study tests the actions of low-dose selenite and Se nanoparticles (SeNPs) on white (WAT) and brown adipose tissue (BAT) deposition, insulin secretion, and GPx1, IRS-1 and FOXO3a expression in the WAT of adolescent rats as regards oxidative stress, adipocyte length and adipokine secretion. Four groups of male adolescent rats were treated: control (C), low selenite supplementation (S), low SeNP supplementation (NS) and moderate SeNP supplementation (NSS). Supplementation was received orally through water intake; NS and NSS rats received two- and tenfold more Se than C animals, respectively. SeNPs were obtained by reducing Se tetrachloride in the presence of ascorbic acid. For the first time in vivo, it was demonstrated that low selenite supplementation contributed to increased adipogenesis via the insulin signaling pathway and LCN2 modulation, while low SeNP administration prevented fat depots in WAT via the decrease in insulin signaling and FOXO3a autophagy in WAT, lowering inflammation. These effects were independent of GPx1 expression or activity in WAT. These findings provide data for dietary approaches to prevent obesity and/or anorexia during adolescence. These findings may be relevant to future studies looking at a nutritional approach aimed at pre-venting obesity and/or anorexia in adolescence.


Assuntos
Nanopartículas , Selênio , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Anorexia/metabolismo , Dieta Hiperlipídica , Suplementos Nutricionais , Insulina/metabolismo , Secreção de Insulina , Masculino , Obesidade/metabolismo , Ratos , Ácido Selenioso/metabolismo , Selênio/metabolismo , Selênio/farmacologia
14.
Plants (Basel) ; 11(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35567168

RESUMO

Legumes are usually used as cover crops to improve soil quality due to the biological nitrogen fixation that occurs due to the interaction of legumes and rhizobia. This symbiosis can be used to recover degraded soils using legumes as pioneer plants. In this work, we screened for bacteria that improve the legume-rhizobia interaction in nutrient-poor soils. Fourteen phosphate solubilizer-strains were isolated, showing at least three out of the five tested plant growth promoting properties. Furthermore, cellulase, protease, pectinase, and chitinase activities were detected in three of the isolated strains. Pseudomonas sp. L1, Chryseobacterium soli L2, and Priestia megaterium L3 were selected to inoculate seeds and plants of Medicago sativa using a nutrient-poor soil as substrate under greenhouse conditions. The effects of the three bacteria individually and in consortium showed more vigorous plants with increased numbers of nodules and a higher nitrogen content than non-inoculated plants. Moreover, bacterial inoculation increased plants' antioxidant activities and improved their development in nutrient-poor soils, suggesting an important role in the stress mechanisms of plants. In conclusion, the selected strains are nodulation-enhancing rhizobacteria that improve leguminous plants growth and nodulation in nutrient-poor soils and could be used by sustainable agriculture to promote plants' development in degraded soils.

15.
Plants (Basel) ; 11(8)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35448819

RESUMO

Legumes are the recommended crops to fight against soil degradation and loss of fertility because of their known positive impacts on soils. Our interest is focused on the identification of plant-growth-promoting endophytes inhabiting nodules able to enhance legume growth in poor and/or degraded soils. The ability of Variovorax paradoxus S110T and Variovorax gossypii JM-310T to promote alfalfa growth in nutrient-poor and metal-contaminated estuarine soils was studied. Both strains behaved as nodule endophytes and improved in vitro seed germination and plant growth, as well as nodulation in co-inoculation with Ensifer medicae MA11. Variovorax ameliorated the physiological status of the plant, increased nodulation, chlorophyll and nitrogen content, and the response to stress and metal accumulation in the roots of alfalfa growing in degraded soils with moderate to high levels of contamination. The presence of plant-growth-promoting traits in Variovorax, particularly ACC deaminase activity, could be under the observed in planta effects. Although the couple V. gossypii-MA11 reported a great benefit to plant growth and nodulation, the best result was observed in plants inoculated with the combination of the three bacteria. These results suggest that Variovorax strains could be used as biofertilizers to improve the adaptation of legumes to degraded soils in soil-recovery programs.

16.
Pharmaceutics ; 14(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35456582

RESUMO

Complexes {Ag[NHCMes,R]}n (R = H, 2a; Me, 2b and 2b'; iPr, 2c; iBu, 2d), were prepared by treatment of imidazolium precursor compounds [ImMes,R] (2-(3-mesityl-1H-imidazol-3-ium-1-yl)acetate, 1a, (S)-2-alkyl(3-mesityl-1H-imidazol-3-ium-1-yl)acetate, 1b-d, and (R)-2-methyl(3-mesityl-1H-imidazol-3-ium-1-yl)acetate, 1b', with Ag2O under appropriate conditions. They were characterised by analytical, spectroscopic (IR, 1H, and 13C NMR and polarimetry), and X-ray methods (2a). In the solid state, 2a is a one-dimensional coordination polymer, in which the silver(I) cation is bonded to the carbene ligand and to the carboxylate group of a symmetry-related Ag[NHCMes,H] moiety. The coordination environment of the silver centre is well described by the DFT study of the dimeric model {Ag[NHCMes,H]}2. The antimicrobial properties of these complexes were evaluated versus Gram-negative bacteria E. coli and P. aeruginosa. From the observed MIC and MBC values (minimal inhibitory concentration and minimal bactericidal concentration, respectively), complex 2b' showed the best antimicrobial properties (eutomer), which were significantly better than those of its enantiomeric derivative 2b (distomer). Additionally, analysis of MIC and MBC values of 2a-d reveal a clear structure-antimicrobial effect relationship. Antimicrobial activity decreases when the steric properties of the R alkyl group in {Ag[NHCMes,R]}n increase.

17.
Dalton Trans ; 51(13): 5061-5071, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35294509

RESUMO

Complexes [Ag(LR)], 2 (LR = 2,2'-(imidazolium-1,3-diyl)di(2-alkylacetate)), were prepared by treatment of compounds HLR, 1, with Ag2O. They were characterised by analytical, spectroscopic (IR, 1H and 13C NMR and polarimetry) and X-ray methods (2c, 2c' and 2e). In the solid state, these compounds are novel one-dimensional or two-dimensional coordination polymers in which silver(I) cations are connected via the chiral [LR]- anion with unprecedented coordination modes. The antimicrobial properties of these complexes were evaluated. 2a and 2b' showed the best antimicrobial properties (minimal inhibitory concentrations and minimal bactericidal concentration) for Pseudomonas aeruginosa and Escherichia coli pathogens. Eutomers 2b' and 2c' showed slightly better antimicrobial properties than their respective enantiomers 2b and 2c.


Assuntos
Anti-Infecciosos , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Ácidos Carboxílicos/química , Testes de Sensibilidade Microbiana , Prata/química , Prata/farmacologia
18.
Environ Sci Pollut Res Int ; 29(30): 45683-45697, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35147874

RESUMO

Heavy metal (HM) pollution and the need to preserve the environment have gathered increasing scientific attention. The immobilization of HMs into less-soluble, less mobile, and less toxic forms in addition to the improvement of Medicago sativa L. growth and HMs accumulation were evaluated after the application of marble waste (MW) and/or beneficial PGP rhizobacteria and mycorrhizae to the mining soil compost. A greenhouse assay was conducted to elucidate the influence of both amendment and beneficial microorganisms. The application of marble waste to the soil-compost resulted in decreasing the bioavailability of metals (Cu, Zn, Pb, and Cd), thus ameliorating the installation of the vegetal cover for 6 months of culture. Cultivation of M. sativa under 5% MW-amended soil for 6 months increased the shoot dry weight by almost twofold, while the inoculation with rhizobacteria-mycorrhizae combined with the application of 15% MW resulted in an improvement of 3.5-fold in case of shoot dry weight. In addition, the application of marble waste amendment or their combination with metallo-resistant bacteria resulted in decreasing HM accumulation leading to HM content below the threshold recommended for animal grazing. Thus, the application of amendments and beneficial microorganisms appeared to guarantee the safe cultivation of alfalfa for 6 months of culture. The dual combination amendments and beneficial microorganisms showed the good potential to restore HM polluted soils and could stand as a novel approach for restoration of HM-contaminated soils.


Assuntos
Metais Pesados , Micorrizas , Poluentes do Solo , Animais , Biodegradação Ambiental , Carbonato de Cálcio , Análise Custo-Benefício , Medicago sativa , Metais Pesados/análise , Micorrizas/química , Solo , Poluentes do Solo/análise
19.
Environ Monit Assess ; 193(4): 232, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772660

RESUMO

Soil and mine tailings are unreceptive to plant growth representing an imminent threat to the environment and resource sustainability. Using indigenous plants and their associated rhizobacteria to restore mining sites would be an eco-friendly solution to mitigate soil-metal toxicity. Soil prospection from Draa Sfar and Kettara mining sites in Morocco was carried out during different seasons for native plant sampling and rhizobacteria screening. The sites have been colonized by fifteen tolerant plant species having different capacities to accumulate Cu, Zn, and P in their shoots/root systems. In Draa Sfar mine, Suaeda vera J.F. Gmel., Sarcocornia fruticosa (L.) A.J. Scott., and Frankenia corymbosa Desf. accumulated mainly Cu (more than 90 mg kg-1), Atriplex halimus L. accumulated Zn (mg kg-1), and Frankenia corymbosa Desf. accumulated Pb (14 mg kg-1). As for Kettara mine, Aizoon canariense L. mainly accumulated Zn (270 mg kg-1), whereas Forsskalea tenacissima L. was the best shoot Cu accumulator with up to 50 mg kg-1, whereas Cu accumulation in roots was 21 mg kg-1. The bacterial screening revealed the strains' abilities to tolerate heavy metals up to 50 mg kg-1 Cu, 250 mg kg-1 Pb, and 150 mg kg-1 Zn. Isolated strains belonged mainly to Bacillaceae (73.33%) and Pseudomonadaceae (10%) and expressed different plant growth-promoting traits, alongside their antifungal activity. Results from this study will provide an insight into the ability of native plants and their associated rhizobacteria to serve as a basis for remediation-restoration strategies.


Assuntos
Metais Pesados , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Monitoramento Ambiental , Metais Pesados/análise , Marrocos , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
20.
J Environ Sci (China) ; 99: 210-221, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183699

RESUMO

Assisted natural remediation (ANR) has been highlighted as a promising, less expensive, and environmentally friendly solution to remediate soil contaminated with heavy metals. We tested the effects of three amendments (10% compost, C; 5 or 15% phosphate sludge, PS5 and PS15; and 5 or 15% marble waste, MW5 and MW15) in combination with microorganism inoculation (rhizobacteria consortium alone, mycorrhizae alone, and the two in-combination) on alfalfa in contaminated soil. Plant concentrations of Zn, Cu, and Pb were measured, along with proline and malondialdehyde production. The microbiological and physicochemical properties of the mining soil were evaluated. Application of the amendments allowed germination and promoted growth. Inoculation with the rhizobacteria consortium and/or mycorrhizae stimulated plant growth. PS and MW stimulated the production of proline. Inoculation of alfalfa with the rhizobacteria-mycorrhizae mixture and the application of MW allowed the safe cultivation of the legume, as shown by the low concentrations of metals in plant shoots. Zn and Pb concentrations were below the limits recommended for animal grazing and accumulated essentially in roots. Soil analyses showed the positive effect of the amendments on the soil physicochemical properties. All treatments increased soil pH (around 7), total organic carbon, and assimilable phosphorus content. Notably, an important decrease in soluble heavy metals concentrations was observed. Overall, our findings revealed that the applied treatments reduced the risk of metal-polluted soils limiting plant growth. The ANR has great potential for success in the restoration of polymetallic and acidic mining soils using the interaction between alfalfa, microorganisms, and organo-mineral amendments.


Assuntos
Metais Pesados , Poluentes do Solo , Animais , Carbonato de Cálcio , Metais Pesados/análise , Fosfatos , Esgotos , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...