Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell Genom ; 4(1): 100462, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190107

RESUMO

Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors-ZFX and ZFY-encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.


Assuntos
Fatores de Transcrição , Cromossomo Y , Humanos , Masculino , Feminino , Fatores de Transcrição/genética , Cromossomos Humanos X/genética , Aberrações dos Cromossomos Sexuais , Expressão Gênica/genética
2.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077089

RESUMO

Apes possess two sex chromosomes-the male-specific Y and the X shared by males and females. The Y chromosome is crucial for male reproduction, with deletions linked to infertility. The X chromosome carries genes vital for reproduction and cognition. Variation in mating patterns and brain function among great apes suggests corresponding differences in their sex chromosome structure and evolution. However, due to their highly repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the state-of-the-art experimental and computational methods developed for the telomere-to-telomere (T2T) human genome, we produced gapless, complete assemblies of the X and Y chromosomes for five great apes (chimpanzee, bonobo, gorilla, Bornean and Sumatran orangutans) and a lesser ape, the siamang gibbon. These assemblies completely resolved ampliconic, palindromic, and satellite sequences, including the entire centromeres, allowing us to untangle the intricacies of ape sex chromosome evolution. We found that, compared to the X, ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements. This divergence on the Y arises from the accumulation of lineage-specific ampliconic regions and palindromes (which are shared more broadly among species on the X) and from the abundance of transposable elements and satellites (which have a lower representation on the X). Our analysis of Y chromosome genes revealed lineage-specific expansions of multi-copy gene families and signatures of purifying selection. In summary, the Y exhibits dynamic evolution, while the X is more stable. Finally, mapping short-read sequencing data from >100 great ape individuals revealed the patterns of diversity and selection on their sex chromosomes, demonstrating the utility of these reference assemblies for studies of great ape evolution. These complete sex chromosome assemblies are expected to further inform conservation genetics of nonhuman apes, all of which are endangered species.

3.
Transl Psychiatry ; 13(1): 397, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104115

RESUMO

Genome-wide (GWAS) and copy number variant (CNV) association studies have reproducibly identified numerous risk alleles associated with bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ), but biological characterization of these alleles lags gene discovery, owing to the inaccessibility of live human brain cells and inadequate animal models for human psychiatric conditions. Human-derived induced pluripotent stem cells (iPSCs) provide a renewable cellular reagent that can be differentiated into living, disease-relevant cells and 3D brain organoids carrying the full complement of genetic variants present in the donor germline. Experimental studies of iPSC-derived cells allow functional characterization of risk alleles, establishment of causal relationships between genes and neurobiology, and screening for novel therapeutics. Here we report the creation and availability of an iPSC resource comprising clinical, genomic, and cellular data obtained from genetically isolated families with BD and related conditions. Results from the first 324 study participants, 61 of whom have validated pluripotent clones, show enrichment of rare single nucleotide variants and CNVs overlapping many known risk genes and pathogenic CNVs. This growing iPSC resource is available to scientists pursuing functional genomic studies of BD and related conditions.


Assuntos
Transtorno Depressivo Maior , Células-Tronco Pluripotentes Induzidas , Transtornos Psicóticos , Esquizofrenia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Transtornos Psicóticos/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Genômica , Estudo de Associação Genômica Ampla
4.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333288

RESUMO

Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex-chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors - ZFX and ZFY - encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.

5.
Cell Genom ; 3(2): 100259, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36819663

RESUMO

The "inactive" X chromosome (Xi) has been assumed to have little impact, in trans, on the "active" X (Xa). To test this, we quantified Xi and Xa gene expression in individuals with one Xa and zero to three Xis. Our linear modeling revealed modular Xi and Xa transcriptomes and significant Xi-driven expression changes for 38% (162/423) of expressed X chromosome genes. By integrating allele-specific analyses, we found that modulation of Xa transcript levels by Xi contributes to many of these Xi-driven changes (≥121 genes). By incorporating metrics of evolutionary constraint, we identified 10 X chromosome genes most likely to drive sex differences in common disease and sex chromosome aneuploidy syndromes. We conclude that human X chromosomes are regulated both in cis, through Xi-wide transcriptional attenuation, and in trans, through positive or negative modulation of individual Xa genes by Xi. The sum of these cis and trans effects differs widely among genes.

6.
ACS Pharmacol Transl Sci ; 4(4): 1422-1436, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423274

RESUMO

Charcot-Marie-Tooth 1A (CMT1A) is the most common form of hereditary peripheral neuropathies, characterized by genetic duplication of the critical myelin gene Peripheral Myelin Protein 22 (PMP22). PMP22 overexpression results in abnormal Schwann cell differentiation, leading to axonal loss and muscle wasting. Since regulation of PMP22 expression is a major target of therapeutic discovery for CMT1A, we sought to establish unbiased approaches that allow the identification of therapeutic agents for this disease. Using genome editing, we generated a coincidence reporter assay that accurately monitors Pmp22 transcript levels in the S16 rat Schwann cell line, while reducing reporter-based false positives. A quantitative high-throughput screen (qHTS) of 42 577 compounds using this assay revealed diverse novel chemical classes that reduce endogenous Pmp22 transcript levels. Moreover, some of these classes show pharmacological specificity in reducing Pmp22 over another major myelin-associated gene, Mpz (Myelin protein zero). Finally, to investigate whether compound-mediated reduction of Pmp22 transcripts translates to reduced PMP22 protein levels, we edited the S16 genome to generate a reporter assay that expresses a PMP22-HiBiT fusion protein using CRISPR/Cas9. Overall, we present a screening platform that combines genome edited cell lines encoding reporters that monitor transcriptional and post-translational regulation of PMP22 with titration-based screening (e.g., qHTS), which could be efficiently incorporated into drug discovery campaigns for CMT1A.

7.
Stem Cell Res ; 47: 101883, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32619719

RESUMO

Chediak-Higashi Syndrome (CHS) is a lysosome-related organelle (LRO) disorder caused by biallelic mutations in the lysosomal trafficking regulator gene, LYST. The clinical features of CHS include oculocutaneous albinism, primary immunodeficiency, bleeding diathesis, risk for development of hemophagocyticlymphohistiocytosis,and progressive neurological problems. The pathophysiological mechanisms underlying this disease are unknown, so developing therapeutic options remains challenging. In this study,four induced pluripotent stem (iPSC) lines from unrelated CHS patients have been generated and successfully characterized for exploring the role of LYST in health and disease in diversecell types.

8.
Nature ; 585(7823): 79-84, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663838

RESUMO

After two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist1,2. Here we present a human genome assembly that surpasses the continuity of GRCh382, along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome3, we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes.


Assuntos
Cromossomos Humanos X/genética , Genoma Humano/genética , Telômero/genética , Centrômero/genética , Ilhas de CpG/genética , Metilação de DNA , DNA Satélite/genética , Feminino , Humanos , Mola Hidatiforme/genética , Masculino , Gravidez , Reprodutibilidade dos Testes , Testículo/metabolismo
9.
Cell Rep ; 26(3): 788-801.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650367

RESUMO

EndoC-ßH1 is emerging as a critical human ß cell model to study the genetic and environmental etiologies of ß cell (dys)function and diabetes. Comprehensive knowledge of its molecular landscape is lacking, yet required, for effective use of this model. Here, we report chromosomal (spectral karyotyping), genetic (genotyping), epigenomic (ChIP-seq and ATAC-seq), chromatin interaction (Hi-C and Pol2 ChIA-PET), and transcriptomic (RNA-seq and miRNA-seq) maps of EndoC-ßH1. Analyses of these maps define known (e.g., PDX1 and ISL1) and putative (e.g., PCSK1 and mir-375) ß cell-specific transcriptional cis-regulatory networks and identify allelic effects on cis-regulatory element use. Importantly, comparison with maps generated in primary human islets and/or ß cells indicates preservation of chromatin looping but also highlights chromosomal aberrations and fetal genomic signatures in EndoC-ßH1. Together, these maps, and a web application we created for their exploration, provide important tools for the design of experiments to probe and manipulate the genetic programs governing ß cell identity and (dys)function in diabetes.


Assuntos
Redes Reguladoras de Genes/genética , Células Secretoras de Insulina/metabolismo , Linhagem Celular , Humanos
10.
Hum Mol Genet ; 27(16): 2830-2839, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29771329

RESUMO

Peripheral nerve myelination is adversely affected in the most common form of the hereditary peripheral neuropathy called Charcot-Marie-Tooth Disease. This form, classified as CMT1A, is caused by a 1.4 Mb duplication on chromosome 17, which includes the abundantly expressed Schwann cell myelin gene, Peripheral Myelin Protein 22 (PMP22). This is one of the most common copy number variants causing neurological disease. Overexpression of Pmp22 in rodent models recapitulates several aspects of neuropathy, and reduction of Pmp22 in such models results in amelioration of the neuropathy phenotype. Recently we identified a potential super-enhancer approximately 90-130 kb upstream of the Pmp22 transcription start sites. This super-enhancer encompasses a cluster of individual enhancers that have the acetylated histone H3K27 active enhancer mark, and coincides with smaller duplications identified in patients with milder CMT1A-like symptoms, where the PMP22 coding region itself was not part of the duplication. In this study, we have utilized genome editing to create a deletion of this super-enhancer to determine its role in Pmp22 regulation. Our data show a significant decrease in Pmp22 transcript expression using allele-specific internal controls. Moreover, the P2 promoter of the Pmp22 gene, which is used in other cell types, is affected, but we find that the Schwann cell-specific P1 promoter is disproportionately more sensitive to loss of the super-enhancer. These data show for the first time the requirement of these upstream enhancers for full Pmp22 expression.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Variações do Número de Cópias de DNA/genética , Elementos Facilitadores Genéticos/genética , Proteínas da Mielina/genética , Animais , Linhagem Celular , Doença de Charcot-Marie-Tooth/patologia , Duplicação Cromossômica/genética , Cromossomos Humanos Par 17/genética , Edição de Genes , Regulação da Expressão Gênica/genética , Humanos , Regiões Promotoras Genéticas , Ratos , Células de Schwann/patologia
11.
BMC Cancer ; 17(1): 127, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193203

RESUMO

BACKGROUND: Neurofibromatosis type 2 (NF2) is a rare autosomal dominant nervous system tumor predisposition disorder caused by constitutive inactivation of one of the two copies of NF2. Meningiomas affect about one half of NF2 patients, and are associated with a higher disease burden. Currently, the somatic mutation landscape in NF2-associated meningiomas remains largely unexamined. CASE PRESENTATION: Here, we present an in-depth genomic study of benign and atypical meningiomas, both from a single NF2 patient. While the grade I tumor was asymptomatic, the grade II tumor exhibited an unusually high growth rate: expanding to 335 times its initial volume within one year. The genomes of both tumors were examined by whole-exome sequencing (WES) complemented with spectral karyotyping (SKY) and SNP-array copy-number analyses. To better understand the clonal composition of the atypical meningioma, the tumor was divided in four sections and each section was investigated independently. Both tumors had second copy inactivation of NF2, confirming the central role of the gene in meningioma formation. The genome of the benign tumor closely resembled that of a normal diploid cell and had only one other deleterious mutation (EPHB3). In contrast, the chromosomal architecture of the grade II tumor was highly re-arranged, yet uniform among all analyzed fragments, implying that this large and fast growing tumor was composed of relatively few clones. Besides multiple gains and losses, the grade II meningioma harbored numerous chromosomal translocations. WES analysis of the atypical tumor identified deleterious mutations in two genes: ADAMTSL3 and CAPN5 in all fragments, indicating that the mutations were present in the cell undergoing fast clonal expansion CONCLUSIONS: This is the first WES study of NF2-associated meningiomas. Besides second NF2 copy inactivation, we found low somatic burden in both tumors and high level of genomic instability in the atypical meningioma. Genomic instability resulting in altered gene dosage and compromised structural integrity of multiple genes may be the primary reason of the high growth rate for the grade II tumor. Further study of ADAMTSL3 and CAPN5 may lead to elucidation of their molecular implications in meningioma pathogenesis.


Assuntos
Neoplasias dos Nervos Cranianos/genética , Genes da Neurofibromatose 2 , Genômica/métodos , Neoplasias Meníngeas/genética , Meningioma/genética , Mutação/genética , Adulto , Neoplasias dos Nervos Cranianos/patologia , Neoplasias dos Nervos Cranianos/cirurgia , Feminino , Genótipo , Humanos , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Meningioma/patologia , Meningioma/cirurgia , Gradação de Tumores , Prognóstico
12.
Dis Model Mech ; 9(7): 769-78, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27482815

RESUMO

Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1 Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1 To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba(-/-) mice and the control littermate (gba(+/+)) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba(-/-) neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba(+/+) neurons. This null allele gba(-/-) mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies.


Assuntos
Doença de Gaucher/fisiopatologia , Doença de Gaucher/terapia , Glucosilceramidase/deficiência , Modelos Biológicos , Neurônios/enzimologia , Neurônios/patologia , Trifosfato de Adenosina/metabolismo , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Antígeno CD24/metabolismo , Cálcio/metabolismo , Linhagem Celular Transformada , Células Cultivadas , Doença de Gaucher/enzimologia , Glucosilceramidase/metabolismo , Cariotipagem , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Especificidade por Substrato
13.
Hum Genet ; 134(7): 775-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939664

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a pediatric myeloproliferative neoplasm that arises from malignant transformation of the stem cell compartment and results in increased production of myeloid cells. Somatic and germline variants in CBL (Casitas B-lineage lymphoma proto-oncogene) have been associated with JMML. We report an incompletely penetrant CBL Y371C mutation discovered by whole-exome sequencing in three individuals with JMML in a large pedigree with 35 years of follow-up. The Y371 residue is highly evolutionarily conserved among CBL orthologs and paralogs. In silico bioinformatics prediction programs suggested that the Y371C mutation is highly deleterious. Protein structural modeling revealed that the Y371C mutation abrogated the ability of the CBL protein to adopt a conformation that is required for ubiquitination. Clinically, the three mutation-positive JMML individuals exhibited variable clinical courses; in two out of three, primary hematologic abnormalities persisted into adulthood with minimal clinical symptoms. The penetrance of the CBL Y371C mutation was 30% for JMML and 40% for all leukemia. Of the 8 mutation carriers in the family with available photographs, only one had significant dysmorphic features; we found no evidence of a clinical phenotype consistent with a "CBL syndrome". Although CBL Y371C has been previously reported in familial JMML, we are the first group to follow a complete pedigree harboring this mutation for an extended period, revealing additional information about this variant's penetrance, function and natural history.


Assuntos
Mutação em Linhagem Germinativa , Leucemia Mielomonocítica Juvenil/genética , Mutação de Sentido Incorreto , Linhagem , Proteínas Proto-Oncogênicas c-cbl/genética , Ubiquitinação/genética , Adolescente , Adulto , Criança , Pré-Escolar , Exoma , Feminino , Seguimentos , Humanos , Lactente , Masculino , Modelos Moleculares , Penetrância , Estrutura Terciária de Proteína , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-cbl/química
14.
JIMD Rep ; 20: 57-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25638460

RESUMO

ATP7A duplications are estimated to represent the molecular cause of Menkes disease in 4-10% of affected patients. We identified a novel duplication of ATP7A exons 1-7 discovered in the context of a challenging prenatal diagnostic situation. All other reported ATP7A duplications (n = 24) involved intragenic tandem duplications, predicted to disrupt the normal translational reading frame and produce nonfunctional ATP7A proteins. In contrast, the exon 1-7 duplication occurred at the 5' end of the ATP7A gene rather than within the gene and did not correspond to any known copy number variants. We hypothesized that, if the exon 1-7 duplication was in tandem, functional ATP7A molecules could be generated depending on promoter selection, mRNA splicing, and the proximal and distal duplication breakpoints and that Menkes disease would be averted. Here, we present detailed molecular characterization of this novel duplication, as well as 2-year postnatal clinical and biochemical correlations. The case highlights the ongoing need for cautious interpretation of prenatal genetic test results.

15.
Stem Cell Res ; 14(1): 95-104, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25535865

RESUMO

Mesenchymal stromal cells (MSCs) support the growth and differentiation of normal hematopoietic stem cells (HSCs). Here we studied the ability of MSCs to support the growth and survival of leukemic stem cells (LSCs) in vitro. Primary leukemic blasts isolated from the peripheral blood of 8 patients with acute myeloid leukemia (AML) were co-cultured with equal numbers of irradiated MSCs derived from unrelated donor bone marrow, with or without cytokines for up to 6weeks. Four samples showed CD34(+)CD38(-) predominance, and four were predominantly CD34(+)CD38(+). CD34(+) CD38(-) predominant leukemia cells maintained the CD34(+) CD38(-) phenotype and were viable for 6weeks when co-cultured with MSCs compared to co-cultures with cytokines or medium only, which showed rapid differentiation and loss of the LSC phenotype. In contrast, CD34(+) CD38(+) predominant leukemic cells maintained the CD34(+)CD38(+) phenotype when co-cultured with MSCs alone, but no culture conditions supported survival beyond 4weeks. Cell cycle analysis showed that MSCs maintained a higher proportion of CD34(+) blasts in G0 than leukemic cells cultured with cytokines. AML blasts maintained in culture with MSCs for up to 6weeks engrafted NSG mice with the same efficiency as their non-cultured counterparts, and the original karyotype persisted after co-culture. Chemosensitivity and transwell assays suggest that MSCs provide pro-survival benefits to leukemic blasts through cell-cell contact. We conclude that MSCs support long-term maintenance of LSCs in vitro. This simple and inexpensive approach will facilitate basic investigation of LSCs and enable screening of novel therapeutic agents targeting LSCs.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Neoplásicas/citologia , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos CD34/metabolismo , Antimetabólitos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citarabina/toxicidade , Humanos , Imunofenotipagem , Interleucina-3/farmacologia , Cariotipagem , Leucemia Mieloide Aguda/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/transplante , Fator de Células-Tronco/farmacologia
16.
Ann Neurol ; 75(4): 525-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24515897

RESUMO

OBJECTIVE: Spinal muscular atrophy (SMA) is one of the most common severe hereditary diseases of infancy and early childhood in North America, Europe, and Asia. SMA is usually caused by deletions of the survival motor neuron 1 (SMN1) gene. A closely related gene, SMN2, modifies the disease severity. SMA carriers have only 1 copy of SMN1 and are relatively common (1 in 30-50) in populations of European and Asian descent. SMN copy numbers and SMA carrier frequencies have not been reliably estimated in Malians and other sub-Saharan Africans. METHODS: We used a quantitative polymerase chain reaction assay to determine SMN1 and SMN2 copy numbers in 628 Malians, 120 Nigerians, and 120 Kenyans. We also explored possible mechanisms for SMN1 and SMN2 copy number differences in Malians, and investigated their effects on SMN mRNA and protein levels. RESULTS: The SMA carrier frequency in Malians is 1 in 209, lower than in Eurasians. Malians and other sub-Saharan Africans are more likely to have ≥3 copies of SMN1 than Eurasians, and more likely to lack SMN2 than Europeans. There was no evidence of gene conversion, gene locus duplication, or natural selection from malaria resistance to account for the higher SMN1 copy numbers in Malians. High SMN1 copy numbers were not associated with increased SMN mRNA or protein levels in human cell lines. INTERPRETATION: SMA carrier frequencies are much lower in sub-Saharan Africans than in Eurasians. This finding is important to consider in SMA genetic counseling in individuals with black African ancestry.


Assuntos
Variações do Número de Cópias de DNA/genética , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , África Subsaariana/epidemiologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , RNA Mensageiro/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética
17.
Biotechnol Lett ; 36(6): 1179-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24563304

RESUMO

Polymorphic non-coding variants at the NOS1AP locus have been associated with the common cardiac, metabolic and neurological traits and diseases. Although, in vitro gene targeting-based cellular and biochemical studies have shed some light on NOS1AP function in cardiac and neuronal tissue, to enhance our understanding of NOS1AP function in mammalian physiology and disease, we report the generation of cre recombinase-conditional Nos1ap over-expression transgenic mice (Nos1ap (Tg)). Conditional transgenic mice were generated by the pronuclear injection method and three independent, single-site, multiple copies integration event-based founder lines were selected. For heart-restricted over-expression, Nos1ap (Tg) mice were crossed with Mlc2v-cre and Nos1ap transcript over-expression was observed in left ventricles from Nos1ap (Tg); Mlc2v-cre F1 mice. We believe that with the potential of conditional over-expression, Nos1ap (Tg) mice will be a useful resource in studying NOS1AP function in various tissues under physiological and disease states.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Expressão Gênica , Integrases/metabolismo , Camundongos Transgênicos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cruzamentos Genéticos , Recombinação Genética
18.
Mol Genet Metab ; 107(3): 586-91, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23062576

RESUMO

T-cell receptor excision circles (TRECs) are circular DNA molecules formed during rearrangement of the T-cell receptor (TCR) genes during lymphocyte development. Copy number of the junctional portion of the δRec-ψJα TREC, assessed by quantitative PCR (qPCR) using DNA from dried blood spots (DBS), is a biomarker for newly formed T cells and absent or low numbers of TRECs indicate SCID (severe combined immunodeficiency) or T lymphocytopenia. No quantitation standard for TRECs exists. To permit comparison of TREC qPCR results with a reliable method for counting TRECs across different laboratories, we sought to construct a stable cell line containing a normal human chromosomal constitution and a single copy of the TREC junction sequence. A human EBV (Epstein Barr virus)-transformed B-cell line was transduced with a lentivirus encoding mCherry fluorescence, puromycin resistance and the δRec-ψJα TREC sequence. A TREC-EBV cell line, with each cell carrying a single lentiviral insertion was established, expanded and shown to have one TREC copy per diploid genome. Graded numbers of TREC-EBV cells added to aliquots of T lymphocyte depleted blood showed TREC copy number proportional to TREC-EBV cell number. TREC-EBV cells, therefore, constitute a reproducible cellular calibrator for TREC assays, useful for both population-based screening for severe combined immunodeficiency and evaluation of naïve T-cell production in clinical settings.


Assuntos
DNA Circular/análise , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/patologia , Linfócitos B/metabolismo , Biomarcadores/análise , Linhagem Celular Transformada , Variações do Número de Cópias de DNA , Teste em Amostras de Sangue Seco , Rearranjo Gênico do Linfócito T , Genes Reporter , Vetores Genéticos , Herpesvirus Humano 4/genética , Humanos , Recém-Nascido , Lentivirus/genética , Contagem de Linfócitos , Linfopenia/diagnóstico , Linfopenia/genética , Linfopenia/patologia , Triagem Neonatal , Reação em Cadeia da Polimerase , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/patologia , Linfócitos T/metabolismo
19.
J Immunol ; 189(3): 1253-64, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22753936

RESUMO

Absent T lymphocytes were unexpectedly found in homozygotes of a transgenic mouse from an unrelated project. T cell development did not progress beyond double-negative stage 1 thymocytes, resulting in a hypocellular, vestigial thymus. B cells were present, but NK cell number and B cell isotype switching were reduced. Transplantation of wild-type hematopoietic cells corrected the defect, which was traced to a deletion involving five contiguous genes at the transgene insertion site on chromosome 12C3. Complementation using bacterial artificial chromosome transgenesis implicated zinc finger BTB-POZ domain protein 1 (Zbtb1) in the immunodeficiency, confirming its role in T cell development and suggesting involvement in B and NK cell differentiation. Targeted disruption of Zbtb1 recapitulated the T(-)B(+)NK(-) SCID phenotype of the original transgenic animal. Knockouts for Zbtb1 had expanded populations of bone marrow hematopoietic stem cells and also multipotent and early lymphoid lineages, suggesting a differentiation bottleneck for common lymphoid progenitors. Expression of mRNA encoding Zbtb1, a predicted transcription repressor, was greatest in hematopoietic stem cells, thymocytes, and pre-B cells, highlighting its essential role in lymphoid development.


Assuntos
Diferenciação Celular/imunologia , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/imunologia , Proteínas Repressoras/fisiologia , Dedos de Zinco/imunologia , Animais , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Subpopulações de Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Células NIH 3T3 , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos T/citologia , Células Precursoras de Linfócitos T/imunologia , Células Precursoras de Linfócitos T/metabolismo , RNA Mensageiro/biossíntese , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética
20.
Genes Chromosomes Cancer ; 51(5): 429-37, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22250039

RESUMO

Neurofibromatosis type 1 (NF1) is a common, autosomal dominant, tumor-predisposition syndrome that arises secondary to mutations in NF1. Glomus tumors are painful benign tumors that originate from the glomus body in the fingers and toes due to biallelic inactivation of NF1. We karyotyped cultures from four previously reported and one new glomus tumor and hybridized tumor (and matching germline) DNA on Illumina HumanOmni1-Quad SNP arrays (≈ 1 × 10(6) SNPs). Two tumors displayed evidence of copy-neutral loss of heterozygosity of chromosome arm 17q not observed in the germline sample, consistent with a mitotic recombination event. One of these two tumors, NF1-G12, featured extreme polyploidy (near-tetraploidy, near-hexaploidy, or near-septaploidy) across all chromosomes. In the remaining four tumors, there were few cytogenetic abnormalities observed, and copy-number analysis was consistent with diploidy in all chromosomes. This is the first study of glomus tumors cytogenetics, to our knowledge, and the first to report biallelic inactivation of NF1 secondary to mitotic recombination of chromosome arm 17q in multiple NF1-associated glomus tumors. We have observed mitotic recombination in 22% of molecularly characterized NF1-associated glomus tumors, suggesting that it is a not uncommon mechanism in the reduction to homozygosity of the NF1 germline mutation in these tumors. In tumor NF1-G12, we hypothesize that mitotic recombination also "unmasked" (reduced to homozygosity) a hypomorphic germline allele in a gene on chromosome arm 17q associated with chromosomal instability, resulting in the extreme polyploidy.


Assuntos
Cromossomos Humanos Par 17 , Genes da Neurofibromatose 1 , Tumor Glômico/genética , Perda de Heterozigosidade , Neurofibromatose 1/complicações , Recombinação Genética , Adulto , Células Cultivadas , Análise por Conglomerados , Variações do Número de Cópias de DNA , Tumor Glômico/complicações , Humanos , Cariotipagem , Masculino , Mitose , Neurofibromatose 1/genética , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...