Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167173, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631410

RESUMO

Here, we show that insulin induces palmitoylation turnover of Caveolin-2 (Cav-2) in adipocytes. Acyl protein thioesterases-1 (APT1) catalyzes Cav-2 depalmitoylation, and zinc finger DHHC domain-containing protein palmitoyltransferase 21 (ZDHHC21) repalmitoylation of the depalmitoylated Cav-2 for the turnover, thereby controlling insulin receptor (IR)-Cav-2-insulin receptor substrate-1 (IRS-1)-Akt-driven signaling. Insulin-induced palmitoylation turnover of Cav-2 facilitated glucose uptake and fat storage through induction of lipogenic genes. Cav-2-, APT1-, and ZDHHC21-deficient adipocytes, however, showed increased induction of lipolytic genes and glycerol release. In addition, white adipose tissues from insulin sensitive and resistant obese patients exhibited augmented expression of LYPLA1 (APT1) and ZDHHC20 (ZDHHC20). Our study identifies the specific enzymes regulating Cav-2 palmitoylation turnover, and reveals a new mechanism by which insulin-mediated lipid metabolism is controlled in adipocytes.


Assuntos
Adipócitos , Caveolina 2 , Proteínas Substratos do Receptor de Insulina , Insulina , Metabolismo dos Lipídeos , Lipoilação , Receptor de Insulina , Humanos , Adipócitos/metabolismo , Animais , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Camundongos , Caveolina 2/metabolismo , Caveolina 2/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Insulina/metabolismo , Obesidade/metabolismo , Obesidade/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Aciltransferases/metabolismo , Aciltransferases/genética , Transdução de Sinais , Resistência à Insulina , Células 3T3-L1 , Masculino
2.
FASEB J ; 37(2): e22745, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36637913

RESUMO

Here, we identify that Caveolin-2 (Cav-2), an integral membrane protein, controls adipocyte hypertrophy in association with nuclear lamina. In the hypertrophy stage of adipogenesis, pY19-Cav-2 association with lamin A/C facilitated the disengagement of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) from lamin A/C and repressed Cav-2 promoter at the nuclear periphery for epigenetic activation of Cav-2, and thereby promoted C/EBPα and PPARγ-induced adipocyte hypertrophy. Stable expression of Cav-2 was required and retained by phosphorylation, deubiquitination, and association with lamin A/C for the adipocyte hypertrophy. However, obese adipocytes exhibited augmented Cav-2 stability resulting from the up-regulation of lamin A/C over lamin B1, protein tyrosine phosphatase 1B (PTP1B), and nuclear deubiquitinating enzyme (DUB), Uchl5. Our findings show a novel epigenetic regulatory mechanism of adipocyte hypertrophy by Cav-2 at the nuclear periphery.


Assuntos
Lamina Tipo A , PPAR gama , Humanos , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Lamina Tipo A/metabolismo , Lâmina Nuclear/metabolismo , Caveolina 2/genética , Caveolina 2/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Adipócitos/metabolismo , Hipertrofia/metabolismo , Diferenciação Celular , Adipogenia/genética , Células 3T3-L1
3.
Cancer Gene Ther ; 30(2): 302-312, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36257975

RESUMO

We have shown that insulin-like growth factor-1 (IGF-1) induces palmitoylation turnover of Flotillin-1 (Flot-1) in the plasma membrane (PM) for cell proliferation, after IGF-1 receptor (IGF-1R) signaling activation. However, the enzymes responsible for the turnover have not been identified. Herein, we show that acyl protein thioesterases-1 (APT-1) catalyzes Flot-1 depalmitoylation, and zinc finger DHHC domain-containing protein palmitoyltransferase-19 (ZDHHC-19) repalmitoylation of the depalmitoylated Flot-1 for the turnover in cervical cancer cells. The turnover prevented desensitization of IGF-1R via endocytosis and lysosomal degradation, thereby exerting excessive IGF-1R activation in cervical cancer cells. FLOT1, LYPLA1 and ZDHHC19 were highly expressed, and epithelial-to-mesenchymal transition (EMT)-inducing TIAM1 and GREM1 coordinately upregulated in malignant cervical cancer tissues. And blocking the turnover suppressed the EMT, migration, and invasion of cervical cancer cells. Our study identifies the specific enzymes regulating Flot-1 palmitoylation turnover, and reveals a novel regulatory mechanism of IGF-1-mediated cervical cancer progression.


Assuntos
Receptor IGF Tipo 1 , Neoplasias do Colo do Útero , Feminino , Humanos , Receptor IGF Tipo 1/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias do Colo do Útero/patologia , Lipoilação , Proteostase , Linhagem Celular Tumoral
4.
Biochim Biophys Acta Mol Cell Res ; 1869(12): 119363, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165916

RESUMO

Here, we show that Caveolin-2 (Cav-2) is an epigenetic regulator for adipogenesis. Upon adipogenic stimulation, inner nuclear membrane (INM)-targeted pY19-Cav-2 interacted with lamin A/C to disengage the repressed Cebpb promoter from lamin A/C, which facilitated the Cebpb promoter association with lamin B1. Consequently, pY19-Cav-2 recruited lysine demethylase 4b (KDM4b) for demethylation of histone H3 lysine 9 trimethylation (H3K9me3) and histone acetyltransferase GCN5 for acetylation of H3K27, and subsequently RNA polymerase II (Pol II) on Cebpb promoter for epigenetic activation of Cebpb, to initiate adipogenesis. Cav-2 knock-down abrogated the Cebpb activation and blocked the Pparg2 and Cebpa activation. Re-expression of Cav-2 restored Cebpb activation and adipogenesis in Cav-2-deficient preadipocytes. Our data identify a new mechanism by which the epigenetic activation of Cebpb is controlled at the nuclear periphery to promote adipogenesis.


Assuntos
Caveolina 2 , Lamina Tipo A , Caveolina 2/genética , Caveolina 2/metabolismo , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Lamina Tipo A/genética , Lisina/genética , Lâmina Nuclear/metabolismo , RNA Polimerase II/genética
5.
Biochem Biophys Res Commun ; 532(4): 535-540, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32896381

RESUMO

N-myristoylation is a ubiquitous protein lipidation in eukaryotes, but regulatory roles for myristoylation on proteins still remain to be explored. Here, we show that N-myristoylation of Caveolin-2 (Cav-2) controls insulin signaling. Alternative translation initiation (ATI)-yielded truncated form of non-N-myristoylable Cav-2ß and various conditional Cav-2 mutants were compared to full-length form of N-myristoylable Cav-2α. Insulin induced insulin receptor (IR) tyrosine kinase-catalyzed Tyr-19 phosphorylation of N-myristoylable M14A Cav-2 and triggered activation of IR signaling cascade. In contrast, insulin induced ubiquitination of non-N-myristoylable M1A and G2A Cav-2 to facilitate protein-tyrosine phosphatase 1B interaction with IR which desensitized IR signaling through internalization. Metabolic labeling and click chemistry showed palmitoylation of M14A but not M1A and G2A Cav-2. Insulin did not induce phosphorylation of M1A and G2A Cav-2 and Cav-2ß. Like Cav-2α, G2A Cav-2 and Cav-2ß formed large homo-oligomers localized in lipid rafts. These findings show Cav-2 N-myristoylation plays a crucial role to coordinate its phosphorylation, palmitoylation, and ubiquitination to control insulin signaling.


Assuntos
Caveolina 2/metabolismo , Insulina/fisiologia , Transdução de Sinais , Animais , Caveolina 2/química , Linhagem Celular , Humanos , Lipoilação , Microdomínios da Membrana/metabolismo , Ácido Mirístico/metabolismo , Fosforilação , Ratos , Receptor de Insulina/metabolismo , Tirosina/metabolismo , Ubiquitinação
6.
Oncogene ; 38(17): 3248-3260, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30631151

RESUMO

Flotillin-1 (Flot-1) has been shown to regulate cancer progression, but the regulatory role of post-translational modifications of Flot-1 on cancers remains elusive. Herein, we show that up-regulated E2 conjugating enzyme UBC9 sumoylates Flot-1 at Lys-51 and Lys-195 with small ubiquitin-like modifier (SUMO)-2/3 modification in metastatic prostate cancer. Mitogen induced the sumoylation and nuclear translocation of Flot-1. The nuclear-targeted Flot-1 physically interacted with Snail, and inhibited Snail degradation through the proteasome in a sumoylation-dependent manner, thereby promoting epithelial-to-mesenchymal transition (EMT). Sumoylation of Flot-1 by up-regulated UBC9 in human metastatic prostate cancer tissues and prostate cancer cells with high metastatic potential positively correlated with the stabilization of Snail and the induction of Snail-mediated EMT genes in the metastatic prostate cancer. Our study reveals a new mechanism of sumoylated Flot-1-mediating Snail stabilization, and identifies a novel sumoylated Flot-1-Snail signaling axis in EMT of metastatic prostate cancer.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Sumoilação/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico/fisiologia , Proteólise , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Regulação para Cima/fisiologia
7.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2169-2182, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29604334

RESUMO

Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2ß isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2ß-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2ß is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI.


Assuntos
Antígenos CD/metabolismo , Caveolina 2/metabolismo , Resistência à Insulina/genética , Iniciação Traducional da Cadeia Peptídica/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Células 3T3 , Animais , Antígenos CD/genética , Caveolina 2/genética , Códon de Iniciação/genética , Endocitose , Células HEK293 , Humanos , Lisossomos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteólise , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor de Insulina/genética
8.
Biochim Biophys Acta ; 1863(11): 2681-2689, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27552914

RESUMO

Association of Caveolin-2 in the inner nuclear membrane specifically with A-type lamin is crucial for the maintenance of its Tyr-19 phosphorylation to promote insulin-response epigenetic activation at the nuclear periphery. Here, we identify that pY19-Caveolin-2 in the inner nuclear membrane exists as homo-oligomeric forms and the A-type lamin is required for sustenance of its oligomeric status. Oligomerization-defective and hence pY19-dephosphorylated monomeric Caveolin-2 in the inner nuclear membrane is unable to carry out Caveolin-2-mediated epigenetic activation of Egr-1 and JunB genes and transactivation of Elk-1 and STAT3 in response to insulin. The homo-oligomeric pY19-Caveolin-2 localizes in and recruits epigenetic modifiers to the A-type lamin-enriched inner nuclear membrane microdomain for the epigenetic activation. Our data show that A-type lamin-dependent Caveolin-2 homo-oligomerization in the inner nuclear membrane microdomain is a precondition for pY19-Caveolin-2-mediated insulin-response epigenetic activation at the nuclear periphery.


Assuntos
Caveolina 2/metabolismo , Epigênese Genética/efeitos dos fármacos , Insulina/farmacologia , Lamina Tipo A/metabolismo , Membrana Nuclear/efeitos dos fármacos , Caveolina 2/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Lamina Tipo A/genética , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Membrana Nuclear/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Interferência de RNA , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transfecção , Tirosina , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
9.
J Cell Sci ; 128(11): 2179-90, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25908865

RESUMO

Here, we explored flotillin-1-mediated regulation of insulin-like growth factor-1 (IGF-1) signaling. Flotillin-1-deficient cells exhibited a reduction in the activation of IGF-1 receptor (IGF-1R), ERK1/2 and Akt pathways, and the transcriptional activation of Elk-1 and the proliferation in response to IGF-1 were reduced in these cells. We found that IGF-1-independent flotillin-1 palmitoylation at Cys34 in the endoplasmic reticulum (ER) was required for the ER exit and the plasma membrane localization of flotillin-1 and IGF-1R. IGF-1-dependent depalmitoylation and repalmitoylation of flotillin-1 sustained tyrosine kinase activation of the plasma-membrane-targeted IGF-1R. Dysfunction and blocking the turnover of flotillin-1 palmitoylation abrogated cancer cell proliferation after IGF-1R signaling activation. Our data show that flotillin-1 palmitoylation is a new mechanism by which the intracellular localization and activation of IGF-1R are controlled.


Assuntos
Lipoilação/fisiologia , Proteínas de Membrana/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Retículo Endoplasmático/metabolismo , Células HEK293 , Células HeLa , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Nucleic Acids Res ; 43(6): 3114-27, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25753664

RESUMO

Insulin controls transcription to sustain its physiologic effects for the organism to adapt to environmental changes added to genetic predisposition. Nevertheless, insulin-induced transcriptional regulation by epigenetic factors and in defined nuclear territory remains elusive. Here we show that inner nuclear membrane (INM)-integrated caveolin-2 (Cav-2) regulates insulin-response epigenetic activation of Egr-1 and JunB genes at the nuclear periphery. INM-targeted pY19-Cav-2 in response to insulin associates specifically with the A-type lamin, disengages the repressed Egr-1 and JunB promoters from lamin A/C through disassembly of H3K9me3, and facilitates assembly of H3K9ac, H3K18ac and H3K27ac by recruitment of GCN5 and p300 and the subsequent enrichment of RNA polymerase II (Pol II) on the promoters at the nuclear periphery. Our findings show that Cav-2 is an epigenetic regulator of histone H3 modifications, and provide novel mechanisms of insulin-response epigenetic activation at the nuclear periphery.


Assuntos
Caveolina 2/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Insulina/metabolismo , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo , Fatores de Transcrição/genética , Animais , Caveolina 2/genética , Linhagem Celular , Epigênese Genética/efeitos dos fármacos , Células HEK293 , Histonas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Insulina/farmacologia , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/genética , Regiões Promotoras Genéticas , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ativação Transcricional
11.
Biochim Biophys Acta ; 1853(5): 1022-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25667086

RESUMO

Here, we demonstrate that insulin receptor (IR) tyrosine kinase catalyzes Tyr-19 and Tyr-27 phosphorylation of caveolin-2 (cav-2), leading to stimulation of signaling proteins downstream of IR, and that the catalysis is dependent on fatty acylation status of cav-2, promoting its interaction with IR. Cav-2 is myristoylated at Gly-2 and palmitoylated at Cys-109, Cys-122, and Cys-145. The fatty acylation deficient mutants are unable to localize in the plasma membrane and not phosphorylated by IR tyrosine kinase. IR interacts with the C-terminal domain of cav-2 containing the cysteines for palmitoylation. IR mutants, Y999F and K1057A, but not W1220S, fail interaction with cav-2. Insulin receptor substrate-1 (IRS-1) is recruited to interact with the IR-catalyzed phospho-tyrosine cav-2, which facilitates IRS-1 association with and activation by IR to initiate IRS-1-mediated downstream signaling. Cav-2 fatty acylation and tyrosine phosphorylation are necessary for the IRS-1-dependent PI3K-Akt and ERK activations responsible for glucose uptake and cell survival and proliferation. In conclusion, fatty acylated cav-2 is a new substrate of IR tyrosine kinase, and the fatty acylation and phosphorylation of cav-2 present novel mechanisms by which insulin signaling is activated.


Assuntos
Caveolina 2/metabolismo , Ácidos Graxos/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Acilação/efeitos dos fármacos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biocatálise/efeitos dos fármacos , Caveolina 2/química , Linhagem Celular , Cisteína/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Insulina/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipoilação/efeitos dos fármacos , Camundongos , Mitógenos/farmacologia , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
12.
Oncotarget ; 5(6): 1554-64, 2014 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-24721928

RESUMO

Rho GDP dissociation inhibitor 2 (RhoGDI2) expression correlates with tumor growth, metastasis, and chemoresistance in gastric cancer. Here, we show that RhoGDI2 functions in the epithelial-mesenchymal transition (EMT), which is responsible for invasiveness during tumor progression. This tumorigenic activity is associated with repression of E-cadherin by RhoGDI2 via upregulation of Snail. Overexpression of RhoGDI2 induced phenotypic changes consistent with EMT in gastric cancer cells, including abnormal epithelial cell morphology, fibroblast-like properties, and reduced intercellular adhesion. RhoGDI2 overexpression also resulted in decreased expression of the epithelial markers E-cadherin and ß-catenin and increased expression of the mesenchymal markers vimentin and fibronectin. Importantly, RhoGDI2 overexpression also stimulated the expression of Snail, a repressor of E-cadherin and inducer of EMT, but not other family members such as Slug or Twist. RNA interference-mediated knockdown of Snail expression suppressed RhoGDI2-induced EMT and invasion, confirming that the effect was Snail-specific. These results indicate that RhoGDI2 plays a critical role in tumor progression in gastric cancer through induction of EMT. Targeting RhoGDI2 may thus be a useful strategy to inhibit gastric cancer cell invasion and metastasis.


Assuntos
Caderinas/metabolismo , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/metabolismo , Antineoplásicos/farmacologia , Apoptose , Western Blotting , Caderinas/genética , Resistencia a Medicamentos Antineoplásicos , Imunofluorescência , Humanos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/genética
13.
Biochim Biophys Acta ; 1833(10): 2176-89, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23665048

RESUMO

The role of caveolin-2 (cav-2), independently of caveolin-1 (cav-1) and caveolae, has remained elusive. Our data show that cav-2 exists in the plasma membrane (PM) in cells lacking cav-1 and forms homo-oligomeric complexes. Cav-2 did not interact with cavin-1 and cavin-2 in the PM. Rab6-GTP was required for the microtubule-dependent exocytic transport of cav-2 from the Golgi to the PM independently of cav-1. The cav-2-oligomerized noncaveolar microdomain was unaffected by cholesterol depletion and protected from shearing of silica-coated PM. Activation of insulin receptor (IR) was processed in the microdomain. Actin depolymerization affected the formation and sustenance of cav-2-oligomerized noncaveolar microdomain and attenuated IR recruitment to the microdomain thereby inhibiting IR signaling activation. Cav-2 shRNA stable cells and the cells ectopically expressing an oligomerization domain truncation mutant, cav-2∆47-86 exhibited retardation of IR signaling activation via the noncaveolar microdomain. Elevation in status of cav-2 expression rendered the noncaveolar activation of IR signaling in cav-1 down-regulated or/and cholesterol-depleted cells. Our findings reveal a novel homo-oligomeric cav-2 microdomain responsible for regulating activation of IR signaling in the PM.


Assuntos
Citoesqueleto de Actina/metabolismo , Caveolina 1/metabolismo , Caveolina 2/metabolismo , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Insulina/metabolismo , Microdomínios da Membrana/metabolismo , Animais , Transporte Biológico , Western Blotting , Cavéolas/metabolismo , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Caveolina 2/antagonistas & inibidores , Caveolina 2/genética , Células Cultivadas , Fibroblastos/citologia , Guanosina Trifosfato/metabolismo , Imunoprecipitação , Insulina/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Insulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Frações Subcelulares
14.
Traffic ; 13(9): 1218-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22607032

RESUMO

Here, we have identified a retrograde transport pathway of caveolin-2 (cav-2) for its regulatory function in the nucleus. Confocal microscopy analysis, photoactivation experiments and subcellular fractionation revealed that cav-2 localized in the Golgi was transported to the inner nuclear membrane (INM) in response to insulin. Exogenous caveolin-1 (cav-1) and P132L-cav-1 expression did not affect the Golgi localization and insulin-induced INM targeting of cav-2. Cav-2(DKV) mutant in the endoplasmic reticulum (ER) was unable to translocate to the INM in response to insulin. The GTP-bound form of Rab6 promoted, but Rab6 siRNA and the GDP-bound form of Rab6 abrogated, retrograde trafficking of cav-2 from the Golgi to ER. Colchicine or nocodazole treatment abolished insulin-induced INM targeting of cav-2. Knock down of gp210 inhibited insulin-induced import of cav-2 from ER/outer nuclear membrane (ONM) to the INM. The INM-targeted cav-2 prevented heterochromatinization and promoted transcriptional activation of Elk-1 and signal transducer and activator of transcription 3 (STAT3). The results provide molecular mechanisms for insulin-induced INM translocation of cav-2 initiated (i) by Golgi-to-ER retrograde trafficking of cav-2 via microtubule-based Rab6-GTP-dependent transport and subsequently processed (ii) by gp210-mediated import of cav-2 from ER/ONM to INM.


Assuntos
Caveolina 2/metabolismo , Insulina/farmacologia , Membrana Nuclear/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 2/genética , Colchicina/farmacologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Nocodazol/farmacologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Mutação Puntual , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno , Ratos , Fator de Transcrição STAT3/metabolismo , Ativação Transcricional , Moduladores de Tubulina/farmacologia , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas rab de Ligação ao GTP/genética
15.
Int J Oncol ; 38(5): 1395-402, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21373752

RESUMO

We investigated whether altering caveolin-2 (cav-2) expression affects the proliferation of cancer cells. Cav-2 was not detected in HepG2, SH-SY5Y and LN-CaP cells, and the loss of cav-2 expression was not restored by 5-aza-2'-deoxycytidine treatment. In contrast, C6, HeLa, A549, MCF7 and PC3M cells expressed cav-2. Effects of re-expression of exogenous cav-2 in HepG2, SH-SY5Y and LN-CaP cells, and siRNA-mediated down-regulation of endogenous cav-2 in C6, HeLa, A549, MCF7 and PC3M cells on cancer proliferation were examined by MTT assay, colony formation assay and flow cytometric analysis. Cav-2 transfection in HepG2 hepatocellular carcinoma cells and knockdown in C6 glioma cells caused reduction in cell proliferation and growth with retarded entry into the S phase. Cav-2 re-expression in SH-SY5Y neuroblastoma cells and depletion in HeLa epithelial cervical cancer and A549 lung adenocarcinoma cells promoted cancer cell proliferation. Luciferase reporter assay showed that transcriptional activation of Elk-1 and STAT3 was significantly decreased in cav-2-transfected HepG2 hepatocellular carcinoma and down-regulated C6 glioma cells. Our data suggest that cav-2 acts as a modulator of cancer progression.


Assuntos
Caveolina 2/fisiologia , Proliferação de Células , Neoplasias/patologia , Animais , Caveolina 2/antagonistas & inibidores , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Glioma/patologia , Células Hep G2 , Humanos , Neuroblastoma/patologia , Ratos , Fator de Transcrição STAT3/fisiologia , Proteínas Elk-1 do Domínio ets/fisiologia
16.
J Cell Mol Med ; 15(4): 888-908, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20455999

RESUMO

Herein, we report that insulin-activated extracellular signal-regulated kinase (ERK) is translocated to the nuclear envelope by caveolin-2 (cav-2) and associates with lamin A/C in the inner nuclear membrane in response to insulin. We identified that the Ser¹54 -Val¹55 -Ser¹56 domain on the C-terminal of cav-2 is essential for insulin-induced phosphorylation and nuclear targeting of ERK and cav-2. In human embryonic kidney 293T cells, ERK was not activated and translocated to the nucleus by insulin in comparison to insulin-like growth factor-1 (IGF-1). However, insulin-stimulated activation of ERK was induced by exogenous addition of cav-2. The activated ERK associated and translocated with the cav-2 to the nucleus. In turn, cav-2 promoted phospho-ERK interaction with lamin A/C in the inner nuclear membrane. In contrast, ERK, but not cav-2, was phosphorylated and translocated to the nucleus by IGF-1. The nuclear targeted phospho-ERK failed to localize in the nuclear envelope in response to IGF-1. Together, our data demonstrate that translocation of phospho-ERK to the nuclear envelope is mediated by Ser¹54 -Val¹55 -Ser¹56 domain of cav-2 and this event is an insulin-specific action.


Assuntos
Caveolina 2/química , Caveolina 2/metabolismo , Núcleo Celular/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Insulina/farmacologia , Sinais Direcionadores de Proteínas , Animais , Células COS , Núcleo Celular/efeitos dos fármacos , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Laminas/metabolismo , Proteínas Mutantes/metabolismo , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Ratos , Receptor de Insulina/metabolismo , Deleção de Sequência , Relação Estrutura-Atividade
17.
Biochem Biophys Res Commun ; 391(1): 49-55, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19895792

RESUMO

Caveolin-2 regulation of insulin receptor (IR) tyrosine kinase activity was investigated. An insulin time course revealed that rapidly induced tyrosine phosphorylation of IR was steadily maintained over a 180 min time period. In parallel, insulin-exerted IR interaction with caveolin-2 was detected as early as 5 min throughout until 180 min. Down-regulation of caveolin-2 by caveolin-2 siRNA arrested specifically a long term activation of IR. The attenuation of IR activation resulted in retardation of rapamycin-sensitive pS727-STAT3 activation. As caveolin-2 tyrosine mutants were examined, Y27A-caveolin-2 explicitly impeded the long term IR activation by insulin, enhanced tyrosine dephosphorylation of IR, impaired tyrosine phosphorylation of IRS-1, and exerted the interaction between activated IR and SOCS-3. Together, we propose that pY27-caveolin-2 prolongs IR activation by its interaction with IR, thereby preventing IR interaction with SOCS-3.


Assuntos
Caveolina 2/metabolismo , Receptor de Insulina/biossíntese , Animais , Caveolina 2/genética , Linhagem Celular , Ativação Enzimática , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Mutação , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Receptor de Insulina/genética , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Tirosina/genética , Tirosina/metabolismo
18.
J Cell Mol Med ; 13(8A): 1549-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19778377

RESUMO

Mitogenic regulation by caveolin-2 in response to insulin was investigated. Insulin triggered phosphorylation of caveolin-2 on tyrosine 19. Insulin increased the interaction between pY19-caveolin-2 and phospho-ERK, and that interaction was inhibited by a MEK inhibitor U0126. Insulin-induced interaction of caveolin-2 with phospho-ERK was prevented when tyrosine 19 is mutated to alanine. Insulin relocalized phospho-ERK and pY19-caveolin-2 to the nucleus and their nuclear co-localization was impaired by U0126. Down-regulation of caveolin-2 by caveolin-2 siRNA arrested the insulin-induced nuclear localization of ERK with no change in the insulin-stimulated ERK activation. Of consequence, the caveolin-2 siRNA attenuated the ERK-mediated c-Jun and cyclinD1 expression and DNA synthesis by insulin. In addition, actin cytoskeleton influenced the nuclear translocation of caveolin-2-ERK complex. Collectively, our findings underscore the importance of pY19-caveolin-2 with the spatial coordination by insulin in ERK-mediated mitogenic regulation of insulin signalling and indicate that the phosphorylation of pY19-caveolin-2 is required for actin cytoskeleton-dependent ERK nuclear import.


Assuntos
Actinas/metabolismo , Caveolina 2/metabolismo , Ciclo Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Insulina/farmacologia , Fosfotirosina/metabolismo , Animais , Caveolina 2/deficiência , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucosídeos/farmacologia , Humanos , Camundongos , Octoxinol , Fosforilação/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Receptor de Insulina/metabolismo , Solubilidade/efeitos dos fármacos , Relação Estrutura-Atividade
19.
Biochim Biophys Acta ; 1793(7): 1325-33, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19427337

RESUMO

The regulatory function of caveolin-2 in signal transducer and activator of transcription 3 (STAT3) signaling by insulin was investigated. Insulin-induced increase in phosphorylation of STAT3 was reduced by caveolin-2 siRNA. Mutagenesis studies identified that phosphorylation of tyrosines 19 and 27 on caveolin-2 is required for the STAT3 activation. Caveolin-2 Y27A mutation decreased insulin-induced phosphorylation of STAT3 interacting with caveolin-2. pY27-Caveolin-2 was required for nuclear translocation of pY705-STAT3 in response to insulin. In contrast, caveolin-2 Y19A mutation influenced neither the phosphorylation of STAT3 nor nuclear translocation of pY705-STAT3. pY19-Caveolin-2, however, was essential for insulin-induced DNA binding of pS727-STAT3 and STAT3-targeted gene induction in the nucleus. Finally, insulin-induced transcriptional activation of STAT3 depended on phosphorylation of both 19 and 27 tyrosines. Together, our data reveal that phosphotyrosine-caveolin-2 is a novel regulator for transcriptional activation of STAT3 in response to insulin.


Assuntos
Caveolina 2/metabolismo , Fibroblastos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Fator de Transcrição STAT3/genética , Ativação Transcricional/efeitos dos fármacos , Animais , Caveolina 2/antagonistas & inibidores , Caveolina 2/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Immunoblotting , Imunoprecipitação , Luciferases , Mutação/genética , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo
20.
Exp Mol Med ; 41(4): 226-35, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19299911

RESUMO

We investigated the effect of phenylephrine (PE)- and isoproterenol (ISO)-induced cardiac hypertrophy on subcellular localization and expression of caveolin-3 and STAT3 in H9c2 cardiomyoblast cells. Caveolin-3 localization to plasma membrane was attenuated and localization of caveolin-3 to caveolae in the plasma membrane was 24.3% reduced by the catecholamine- induced hypertrophy. STAT3 and phospho-STAT3 were up-regulated but verapamil and cyclosporin A synergistically decreased the STAT3 and phospho- STAT3 levels in PE- and ISO-induced hypertrophic cells. Both expression and activation of STAT3 were increased in the nucleus by the hypertrophy. Immunofluorescence analysis revealed that the catecholamine- induced hypertrophy promoted nuclear localization of pY705-STAT3. Of interest, phosphorylation of pS727- STAT3 in mitochondria was significantly reduced by catecholamine-induced hypertrophy. In addition, mitochondrial complexes II and III were greatly down- regulated in the hypertrophic cells. Our data suggest that the alterations in nuclear and mitochondrial activation of STAT3 and caveolae localization of caveolin-3 are related to the development of the catecholamine-induced cardiac hypertrophy.


Assuntos
Catecolaminas/farmacologia , Cavéolas/metabolismo , Caveolina 3/metabolismo , Mitocôndrias/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular , Hipertrofia/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...