Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Biochem ; 46(2): e14058, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981526

RESUMO

The present research aimed to investigate the attenuative effects of watermelon (Citrullus lanatus) leaf extract on biochemical and histological parameters in a high-fat diet combined with a low-dose streptozotocin (HFD/STZ)-induced type 2 diabetes mellitus. Forty male Sprague Dawley rats were divided into five groups, including three supplemented groups: 10 mg metformin/kg BW (HFD/STZ +M), 200 mg watermelon leaf extract /kg BW (HFD/STZ + LD), and 400 mg watermelon leaf extract /kg BW (HFD/STZ + HD). The efficacy of the 6-week intervention was evaluated by measuring body weight, fasting blood sugar, serum insulin, lipid profile, superoxide dismutase, catalase, malondialdehyde, and serum liver markers. Kidneys and liver structure were defined by histopathological examination. Results revealed that intervention with watermelon leaf extract attenuated the biochemical parameters and the structural changes in kidneys and liver. In brief, the watermelon leaf extract treatment could effectively decrease complications associated with diabetes better than metformin, and that the treatment with 400 mg/kg BW is the most potent. PRACTICAL APPLICATIONS: This was the first study to investigate the antidiabetic potential of watermelon leaf extract in obese diabetic rats. Data revealed that the watermelon leaf extract significantly attenuated the HFD/STZ-induced diabetes changes, as evidenced by the biochemical and histological data. Hence, watermelon leaf could be an excellent candidate to be developed as a functional food ingredients or nutraceuticals for holistic management of diabetes mellitus and its complications.


Assuntos
Citrullus , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Masculino , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Estreptozocina/efeitos adversos
2.
J Food Biochem ; 46(1): e14027, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34914111

RESUMO

Ergogenic property is the ability to enhance capacity for physical activities through efficient production of energy and is potentially beneficial in weight management for the obese. In this study, ergogenic property of Morinda citrifolia leaf's extract (MCL) was evaluated using AMP-activated protein kinase (AMPK) activity and high fat diet-induced obese rats. Findings from the study showed that MCL demonstrated ergogenic activity via enhancement of AMPK activity using L6 skeletal muscle cell line. Interestingly, the result also revealed that rats treated with the intermediate dosage of MCL experienced the lowest % weight gain. The rats fed the highest dose of 200 mg/kg BW MCL demonstrated the longest swimming time of approximately three times that of green tea and caffeine-fed rats. The highest dose fed rats were also found to have lower glucose and lactate levels, suggesting that energy metabolism was more effective in these rats. In addition, lactate dehydrogenase and creatinine kinase activities, the muscle injury indicators, were found to be the lowest in rats fed the highest MCL dose. The same effect was not seen in rats fed either caffeine or green tea, indicating that MCL treatment is may be protective of the rats' muscles. It was also shown that MCL consisted of various flavonoids with epicatechin, catechin, and quercetin that may be responsible for the effects measured. In conclusion, improvements were seen in rats fed MCL in terms of weight management, endurance capacity, energy metabolism, and muscle injury parameters. PRACTICAL APPLICATIONS: Results of the study revealed that Morinda citrifolia leaf has great potential to be used as functional ingredient in the development of designer food/drink as ergogenic aid for both obese and non-obese individuals. Morinda citrifolia leaf could help in the weight management of obese people and enhance endurance capacity and energy metabolism in active individuals.


Assuntos
Morinda , Animais , Metabolismo Energético , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley
3.
Plant Physiol Biochem ; 148: 180-192, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31972387

RESUMO

Phosphatidylinositol 3-kinases (PI3Ks) are characterized by the presence of a C2 domain at the N-terminal end (class I, III); or at both the N-terminal and C-terminal ends (class II), sometimes including a Plextrin homology domain and/or a Ras domain. Plant PI3Ks are analogous to the class III mammalian PI3K. An N-terminal fragment (~170 aa) of the tomato PI3K regulatory domain including the C2 domain, was cloned and expressed in a bacterial system. This protein was purified to homogeneity and its physicochemical properties analyzed. The purified protein showed strong binding with monophosphorylated phosphatidylinositols, and the binding was dependent on calcium ion concentration and pH. In the overall tertiary structure of PI3K, C2 domain showed unique characteristics, having three antiparallel beta-sheets, hydrophobic regions, acidic as well as alkaline motifs, that can enable its membrane binding upon activation. To elucidate the functional significance of C2 domain, transgenic tobacco plants expressing the C2 domain of PI3K were generated. Transgenic plants showed defective pollen development and disrupted seed set. Flowers from the PI3K-C2 transgenic plants showed delayed wilting, and a decrease in ethylene production. It is likely that introduction of the PI3K-C2 segment may have interfered with the normal binding of PI3K to the membrane, delaying the onset of membrane lipid catabolism that lead to senescence.


Assuntos
Domínios C2 , Fosfatidilinositol 3-Quinase , Solanum lycopersicum , Animais , Domínios C2/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Fosfatidilinositol 3-Quinase/química , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Nicotiana/genética
4.
Phytochem Anal ; 31(2): 191-203, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31381209

RESUMO

INTRODUCTION: Natural products are obtaining much acceptance as ergogenic aid, not only among athletes but also among the general population including people with excess body fat. Under normal circumstances, an obese person will have the desire and ability to exercise reduced; mainly because they are easily fatigued. Thus, they need to boost their energy production so that they can be more active and healthier. OBJECTIVE: In this present work, Morinda citrifolia L. leaf extract (MLE) which is believed to possess ergogenic property, was evaluated on its effect on an obese animal model using 1 H-NMR based metabolomics. MATERIAL AND METHODS: Rats were fed with high fat diet (HFD) for 12 weeks for obese development. Once this was achieved, all the rats underwent endurance exercise (forced swimming test) every 2 weeks for 8 weeks together with treatment. The time to exhaustion was recorded for each rat. Three different dosages of MLE: 50 mg/kg, 100 mg/kg and 200 mg/kg of body weight were used together with two positive controls: 5 mg/kg caffeine and 100 mg/kg green tea. Blood was collected before and after treatments for metabolomics study. RESULTS: Findings showed that feeding the rats at a dose of 200 mg/kg body weight MLE significantly prolonged the exhaustive swimming time of the rats, and altered the metabolites present in their serum. Discriminating metabolites involved were the product of various metabolic pathways, including carbohydrate, lipids metabolism and energy metabolism. Treatment with 200 mg/kg body weight MLE resulted in significant improvement in the metabolic perturbations where the proximity of the obese exercised treated group to that of normal exercised group in the partial least squares discriminant analysis score plot was observed. CONCLUSION: The present work demonstrated ergogenic property of MLE based on the improved metabolic perturbation in exercised obese rats.


Assuntos
Morinda , Animais , Humanos , Metabolômica , Obesidade , Extratos Vegetais , Ratos , Ratos Sprague-Dawley
5.
Molecules ; 24(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484470

RESUMO

Herbs that are usually recognized as medicinal plants are well known for their therapeutic effects and are traditionally used to treat numerous diseases, including aging. This study aimed to evaluate the metabolite variations among six selected herbs namely Curcurma longa, Oenanthe javanica, Vitex negundo, Pluchea indica, Cosmos caudatus and Persicaria minus using proton nuclear magnetic resonance (1H-NMR) coupled with multivariate data analysis (MVDA). The free radical scavenging activity of the extract was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) assay. The anti-aging property was characterized by anti-elastase and anti-collagenase inhibitory activities. The results revealed that P. minus showed the highest radical scavenging activities and anti-aging properties. The partial least squares (PLS) biplot indicated the presence of potent metabolites in P. minus such as quercetin, quercetin-3-O-rhamnoside (quercitrin), myricetin derivatives, catechin, isorhamnetin, astragalin and apigenin. It can be concluded that P. minus can be considered as a potential source for an anti-aging ingredient and also a good free radical eradicator. Therefore, P. minus could be used in future development in anti-aging researches and medicinal ingredient preparations.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Plantas Medicinais/química , Flavonoides/química , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...