Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776479

RESUMO

Building 3D electrospun macrostructures and monitoring the biological activities inside them are challenging. In this study, 3D fibrous polycaprolactone (PCL) macrostructures were successfully fabricated using in-house 3D electrospinning. The main factors supporting the 3D self-assembled nanofiber fabrication are the H3PO4 additives, flow rate, and initial distance. The effects of solution concentration, solvent, H3PO4 concentration, flow rate, initial distance, voltage, and nozzle speed on the 3D macrostructures were examined. The optimal conditions of 4 mL/h flow rate, 4 cm initial nozzle-collector distance, 14 kV voltage, and 1 mm/s nozzle speed provided a rapid buildup of cylinder macrostructures with 6 cm of diameter, reaching a final height of 16.18 ± 2.58 mm and a wall thickness of 3.98 ± 1.01 mm on one perimeter with uniform diameter across different sections (1.40 ± 1.10 µm average). Oxygen plasma treatment with 30-50 W for 5 min significantly improved the hydrophilicity of the PCL macrostructures, proving a suitable scaffold for in vitro cell cultures. Additionally, 3D images obtained by synchrotron radiation X-ray tomographic microscopy (SRXTM) presented cell penetration and cell growth within the scaffolds. This breakthrough in 3D electrospinning surpasses current scaffold fabrication limitations, opening new possibilities in various fields.

2.
Nanotechnology ; 34(42)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37526494

RESUMO

Triboelectric nanogenerators (TENGs) are crucial for applications such as smart sensors and bio-electronics. In the current work, we aimed for improved performance of TENGs with incorporation of BaTiO3powder, which is known for its strong ferroelectric properties, combining it with epoxy resin to improve the flexibility of our devices. We observed that our TENGs can operate for over 24 000 cycles with no degradation of function. Additionally, we improved the electrical performance of the TENGs by incorporating various aluminum concentrations that change the electronic properties in the form of mixed epoxy resin, BaTiO3, and Al nanopowders. To identify the optimum conditions for the best performance, we analyzed the electrical characteristics and material properties by employing scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffractometry characterization techniques. Our findings suggest that this innovative combination of materials and optimization techniques can significantly improve the performance of TENGs, making them ideal for practical applications in various fields, such as low-power electronics, environmental monitoring and healthcare. Moreover, these enhanced TENGs can serve as sustainable and dependable energy sources for various applications.

3.
ACS Appl Mater Interfaces ; 15(30): 36096-36106, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471608

RESUMO

Oral healthcare monitoring is a vital aspect of identifying and addressing oral dental problems including tooth decay, gum pain, and oral cancer. Day by day, healthcare facilities and regular checkups are becoming more costly and time-consuming. In this context, consumers are moving toward advanced technology, such as bite sensors, to obtain regular data about their occlusal chewing patterns and strength. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting abundant vibrations from nature or human motion into electrical energy. In this work, biomaterials are obtained from biowastes such as cellulose from wood waste, chitosan from crab shells, and gelatin from fish scales. All wastes are biodegradable, and our work aims at sustainability and waste hierarchy. The single electrode mode-based TENG was designed and fabricated using biodegradable poly(vinyl alcohol) (PVA)-biomaterial composites, rice paper as a substrate, and edible silver leaf as an electrode. The highest electrical output was obtained for PVA/chitosan 10 wt % composite-based TENG (PC10) of about 20 V, 200 nA, and 12 nC. The biomechanical energy harvesting was measured, and powering of LED was demonstrated using a PC10 TENG device. A biocompatible bite sensor based on the TENG was used to measure the biting force of a dummy teeth model to demonstrate its potential use in dental health applications. It indicates the promising future value of disposable oral medication devices without any invasive surgery or injection.


Assuntos
Quitosana , Animais , Humanos , Saúde Bucal , Materiais Biocompatíveis , Celulose , Fontes de Energia Elétrica
4.
Carbohydr Polym ; 297: 120070, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184158

RESUMO

This research proposed a simple ionic embedded method to improve electrical output performance by adding surface charges of cationic chitosan (CS) biopolymer for compatible utilization of the triboelectric nanogenerator (TENG). By simply embedding cationic salts, the TENG performance was enhanced by over four times more than that with pristine CS. Moreover, by modifying roughness on the film surface, the optimized condition of R-CS/3 %CaCl2 reached the highest VOC and ISC of ~149 V and ~15 µA, respectively, thus exceeding the output from pristine R-CS TENG by four- and three times of ⁓38 V and ⁓5.1 µA. The maximum power output of 400 µW/cm2 can be observed at the 10 MΩ external load resistance. Finally, by integrating an automatic self-charge pumping (ASCP) module, the ASCP/CS-TENG provided highly efficient VOC and ISC output power by over 1.3 times more than the R-CS/3 %CaCl2 TENG and could light up 72 light emitting diodes (LEDs) easily.


Assuntos
Quitosana , Cloreto de Cálcio , Sais
5.
Materials (Basel) ; 15(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744236

RESUMO

This paper elucidates the influence of borax decahydrate addition on the flexural and thermal properties of 10 mm thin fly ash/ladle furnace slag (FAS) geopolymers. The borax decahydrate (2, 4, 6, and 8 wt.%) was incorporated to produce FAB geopolymers. Heat treatment was applied with temperature ranges of 300 °C, 600 °C, 900 °C, 1000 °C and 1100 °C. Unexposed FAB geopolymers experienced a drop in strength due to a looser matrix with higher porosity. However, borax decahydrate inclusion significantly enhanced the flexural performance of thin geopolymers after heating. FAB2 and FAB8 geopolymers reported higher flexural strength of 26.5 MPa and 47.8 MPa, respectively, at 1000 °C as compared to FAS geopolymers (24.1 MPa at 1100 °C). The molten B2O3 provided an adhesive medium to assemble the aluminosilicates, improving the interparticle connectivity which led to a drastic strength increment. Moreover, the borax addition reduced the glass transition temperature, forming more refractory crystalline phases at lower temperatures. This induced a significant strength increment in FAB geopolymers with a factor of 3.6 for FAB8 at 900 °C, and 4.0 factor for FAB2 at 1000 °C, respectively. Comparatively, FAS geopolymers only achieved 3.1 factor in strength increment at 1100 °C. This proved that borax decahydrate could be utilized in the high strength development of thin geopolymers.

6.
J Funct Biomater ; 13(1)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35225979

RESUMO

Silver diamine nitrate (SDN) is expected to help control caries similar to silver diamine fluoride (SDF). The aim of this study was to determine the mineral precipitation in demineralized dentin and the cytotoxicity of SDN and SDF to dental pulp cells. Demineralized dentin specimens were prepared, and SDF, SDN, or water (control) was applied. The specimens were then remineralized in simulated body fluid for 2 weeks. The mineral precipitation in the specimens was examined using FTIR-ATR, SEM-EDX, and synchrotron radiation X-ray tomographic microscopy (SRXTM). Additionally, the cytotoxicity of SDF and SDN to human dental pulp stem cells was analyzed using an MTT assay. The increase in FTIR spectra attributable to apatite formation in demineralized dentin in the SDF group was significantly higher compared to the SDN and control groups (p < 0.05). Dentinal tubule occlusion by the precipitation of silver salts was detected in both SDF and SDN groups. The mineral density as shown in SRXTM images and cytotoxicity of both SDN and SDF groups were comparable (p > 0.05). In conclusion, SDF demonstrated superior in vitro apatite formation compared to SDN. However, the degree of mineral precipitation and cytotoxic effects of both were similar.

7.
Biotechnol Appl Biochem ; 69(1): 20-29, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33179817

RESUMO

Silver (Ag)/silver chloride (AgCl) nanoparticles have been used worldwide for their antimicrobial activity. Proteases play an important role in many physiological processes during wound healing. Therefore, the aim of this study was to fabricate silver-type nanoparticles exhibiting protease activity for medical applications such as wound healing and dressings. The Ag/AgCl nanoparticles were fabricated using Bacillus sp. protease and visible light activation. The size of the fabricated nanoparticles was estimated to be 35.29 ± 6.43 nm. The nanoparticles were coated on a cotton gauze bandage using immersion and ultrasonication. Scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed that the nanoparticles could be used to coat the gauze bandage. Synchrotron radiation X-ray tomographic microscopy indicated that coating with the nanoparticles did not destroy the packing of cotton fibers in the gauze bandage. The nanoparticles exhibited fibrinolytic and collagenolytic activities. Protease activity remained after the nanoparticle coating was applied to the gauze bandage. The nanoparticles were not absorbed on a gelatin agar plate after incubation at 37 °C for 18 H. These results suggest that the coated cotton gauze bandage may be safe for further use, and the nanoparticles may not be absorbed into animal or human skin.


Assuntos
Bacillus , Nanopartículas Metálicas , Nanopartículas , Animais , Bandagens , Cloretos , Humanos , Peptídeo Hidrolases , Prata , Compostos de Prata
8.
Dent J (Basel) ; 9(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198701

RESUMO

Silver diamine fluoride (SDF) is a cost-effective method for arresting active dental caries. However, the limited cooperation of patients may lead to an SDF application time that is shorter than the recommended 1-3 min for carious lesions. Therefore, the aim of this study was to assess the effect of different application times of SDF on the degree of mineral precipitation in demineralized dentin. Demineralized dentin specimens from permanent maxillary molars were treated by applying 38% SDF for 30, 60, or 180 s. Water was applied in the control group. The specimens were immersed in simulated body fluid for 2 weeks, and the mineral precipitation in demineralized dentin was then analyzed using FTIR-ATR, SEM-EDX, and synchrotron radiation X-ray tomographic microscopy (SRXTM). The FTIR-ATR results showed a significant increase in mineral precipitation in the 180 s group after 1 week. However, after 2 weeks, the SRXTM images indicated comparable mineral density between the 30, 60, and 180 s groups. The precipitation of silver chloride and calcium phosphate crystals that occluded dentinal tubules was similar in all experimental groups. In conclusion, an application time of either 30, 60, or 180 s promoted a comparable degree of mineral precipitation in demineralized dentin.

9.
Sci Rep ; 11(1): 1459, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446765

RESUMO

A bio -renewable polyisoprene obtained from Hevea Brasiliensis was used to produce functionalised carbon composite foam as an adsorbent for heavy metal ions. Functionalised carbon materials (C-SO3H, C-COOH, or C-NH2) derived from coconut shell waste were prepared via a hydrothermal treatment. Scanning electron microscopy images showed that the functionalised carbon particles had spherical shapes with rough surfaces. X-ray photoelectron spectroscopy confirmed that the functional groups were successfully functionalised over the carbon surface. The foaming process allowed for the addition of carbon (up to seven parts per hundred of rubber) to the high ammonia natural rubber latex. The composite foams had open pore structures with good dispersion of the functionalised carbon. The foam performance on copper ion adsorption has been investigated with regard to their functional group and adsorption conditions. The carbon foams achieved maximum Cu(II) adsorption at 56.5 [Formula: see text] for C-SO3H, 55.7 [Formula: see text] for C-COOH, and 41.9 [Formula: see text] for C-NH2, and the adsorption behaviour followed a pseudo-second order kinetics model.

10.
Sci Rep ; 9(1): 12293, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444374

RESUMO

Hypertension and osteoporosis are the major non-communicable diseases in the elderly worldwide. Although clinical studies reported that hypertensive patients experienced significant bone loss and likelihood of fracture, the causal relationship between hypertension and osteoporosis has been elusive due to other confounding factors associated with these diseases. In this study, spontaneously hypertensive rats (SHR) were used to address this relationship and further explored the biophysical properties and the underlying mechanisms. Long bones of the hind limbs from 18-week-old female SHR were subjected to determination of bone mineral density (BMD) and their mechanical properties. Using synchrotron radiation X-ray tomographic microscopy (SRXTM), femoral heads of SHR displayed marked increase in porosity within trabecular area together with decrease in cortical thickness. The volumetric micro-computed tomography also demonstrated significant decreases in trabecular BMD, cortical thickness and total cross-sectional area of the long bones. These changes also led to susceptibility of the long bones to fracture indicated by marked decreases in yield load, stiffness and maximum load using three-point bending tests. At the cellular mechanism, an increase in the expression of osteoclastogenic markers with decrease in the expression of alkaline phosphatase was found in primary osteoblast-enriched cultures isolated from long bones of these SHR suggesting an imbalance in bone remodeling. Taken together, defective bone mass and strength in hypertensive rats were likely due to excessive bone resorption. Development of novel therapeutic interventions that concomitantly target hypertension and osteoporosis should be helpful in reduction of unwanted outcomes, such as bone fractures, in elderly patients.


Assuntos
Biomarcadores/metabolismo , Osso e Ossos/anatomia & histologia , Osteogênese , Regulação para Cima , Animais , Pressão Sanguínea , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Forma Celular , Diástole/fisiologia , Feminino , Fêmur/anatomia & histologia , Fêmur/diagnóstico por imagem , Regulação da Expressão Gênica , Tamanho do Órgão , Osteoblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Endogâmicos SHR , Sístole/fisiologia , Tíbia/anatomia & histologia , Tíbia/diagnóstico por imagem , Microtomografia por Raio-X
11.
Nanotechnology ; 28(37): 375602, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28782731

RESUMO

Two series of Ag x /Au/Pt y trimetallic nanoparticles (Ag x Au1Pt2 with x ranging from 1-5 and Ag4Au1Pt y with y ranging from 1-3) were prepared by a sequential chemical reduction method that involved the deposition of Pt on preformed Ag/Au core-shell particles by systematically controlling the amount of Ag, Au, and Pt metal precursor solutions. The structural changes (the diameters and increased surface roughness from the defective features) and absorption patterns (the significant reduction of the peak intensities) of the nanoparticles examined with TEM and UV-vis spectroscopy indicated the selective incorporation of Pt on the Ag/Au nanoparticles regardless of their compositions. In addition, a combination of WDX, XRD, and XPS analyses quantitatively and qualitatively confirmed the successful formation of the Ag x Au1Pt2 and Ag4Au1Pt y trimetallic nanoparticles. Subsequently, these series of nanoparticles were deposited on multi-wall carbon nanotubes (MWCNTs) to evaluate their electrocatalytic property in the methanol oxidation reaction (MOR) as a function of their metal compositions. The results showed that the electrocatalytic activities of all Ag4/Au1/Pt y systems were higher than those of typical Pt on the MWCNTs. In particular, the Ag4Au1Pt2 nanoparticles exhibited the highest electrocatalytic property for the MOR, suggesting the importance of the proper combination of metal constituents and structures to regulate the activity in electrocatalytic systems.

12.
Nanotechnology ; 28(2): 025601, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27905318

RESUMO

The in situ formation of dielectric silica (SiO2) particles was carried out in the presence of temperature-responsive poly(N-isopropylacrylamide) particles. Unlike the typical sol-gel method used to prepare various SiO2 particles, the highly uniform growth of SiO2 particles was achieved within the cross-linked polymer particles (i.e., the polymer particles were filled with the SiO2 particles) simply by utilizing interfacial interactions, including the van der Waals attractive force and hydrogen bonding in nanoscale environments. The structural and morphological features as well as the thermal behaviors of these composites were thoroughly examined by electron microscopes, dynamic light scattering, and thermal analyzers. In particular, the thermal properties of these composites were completely different from the bare polymer, SiO2 particles, and their mixtures, which clearly suggested the successful incorporation of multiple SiO2 particles within the cross-linked polymer particles. Similarly, titanium oxide (TiO2) particles were easily embedded within the polymer particle template which exhibited improved overall properties. As a whole, understanding in situ formation of nanoscale inorganic particles within polymer particle templates can allow for designing novel composite materials possessing enhanced chemical and physical properties.

13.
Mater Sci Eng C Mater Biol Appl ; 61: 123-32, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838832

RESUMO

In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line.


Assuntos
Compostos Férricos , Ouro , Compostos de Magnésio , Teste de Materiais , Nanopartículas/química , Animais , Linhagem Celular , Compostos Férricos/química , Compostos Férricos/farmacologia , Ouro/química , Ouro/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...