Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Neuropathol Appl Neurobiol ; 49(6): e12941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812040

RESUMO

Multiple system atrophy (MSA) is a neurodegenerative disorder characterised by a combined symptomatology of parkinsonism, cerebellar ataxia, autonomic failure and corticospinal dysfunction. In brains of MSA patients, the hallmark lesion is the aggregation of misfolded alpha-synuclein in oligodendrocytes. Even though the underlying pathological mechanisms remain poorly understood, the evidence suggests that alpha-synuclein aggregation in oligodendrocytes may contribute to the neurodegeneration seen in MSA. The primary aim of this review is to summarise the published stereological data on the total number of neurons and glial cell subtypes (oligodendrocytes, astrocytes and microglia) and volumes in brains from MSA patients. Thus, we include in this review exclusively the reports of unbiased quantitative data from brain regions including the neocortex, nuclei of the cerebrum, the brainstem and the cerebellum. Furthermore, we compare and discuss the stereological results in the context of imaging findings and MSA symptomatology. In general, the stereological results agree with the common neuropathological findings of neurodegeneration and gliosis in brains from MSA patients and support a major loss of nigrostriatal neurons in MSA patients with predominant parkinsonism (MSA-P), as well as olivopontocerebellar atrophy in MSA patients with predominant cerebellar ataxia (MSA-C). Surprisingly, the reports indicate only a minor loss of oligodendrocytes in sub-cortical regions of the cerebrum (glial cells not studied in the cerebellum) and negligible changes in brain volumes. In the past decades, the use of stereological methods has provided a vast amount of accurate information on cell numbers and volumes in the brains of MSA patients. Combining different techniques such as stereology and diagnostic imaging (e.g. MRI, PET and SPECT) with clinical data allows for a more detailed interdisciplinary understanding of the disease and illuminates the relationship between neuropathological changes and MSA symptomatology.


Assuntos
Ataxia Cerebelar , Atrofia de Múltiplos Sistemas , Neocórtex , Transtornos Parkinsonianos , Humanos , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo , Neocórtex/patologia
2.
J Imaging ; 8(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36547494

RESUMO

The margin of the removed tumor in cancer surgery has an important influence on survival. Adjuvant treatments, prognostic complications, and financial costs are required when the pathologist observes a close/positive surgical margin. Ex vivo imaging of resected cancer tissue has been suggested for margin assessment, but traditional cross-sectional imaging is not optimal in a surgical setting. Instead, three-dimensional (3D) ultrasound is a portable, high-resolution, and low-cost method to use in the operation room. In this study, we aimed to investigate the accuracy of 3D ultrasound versus computed tomography (CT) to measure the tumor volume in an animal model compared to gross pathology assessment. The specimen was formalin fixated before systematic slicing. A slice-by-slice area measurement was performed to compare the accuracy of the 3D ultrasound and CT techniques. The tumor volume measured by pathological assessment was 980.2 mm3. The measured volume using CT was 890.4 ± 90 mm3, and the volume using 3D ultrasound was 924.2 ± 96 mm3. The correlation coefficient for CT was 0.91 and that for 3D ultrasound was 0.96. Three-dimensional ultrasound is a feasible and accurate modality to measure the tumor volume in an animal model. The accuracy of tumor delineation on CT depends on the soft tissue contrast.

3.
Front Neurosci ; 16: 968839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213739

RESUMO

Efficient interhemispheric integration of neural activity between left and right primary motor cortex (M1) is critical for inter-limb motor control. We employed optogenetic stimulation to establish a framework for probing transcallosal M1-M1 interactions in rats. We performed optogenetic stimulation of excitatory neurons in right M1 of male Sprague-Dawley rats. We recorded the transcallosal evoked potential in contralateral left M1 via chronically implanted electrodes. Recordings were performed under anesthesia combination of dexmedetomidine and a low concentration of isoflurane. We systematically varied the stimulation intensity and duration to characterize the relationship between stimulation parameters in right M1 and the characteristics of the evoked intracortical potentials in left M1. Optogenetic stimulation of right M1 consistently evoked a transcallosal response in left M1 with a consistent negative peak (N1) that sometimes was preceded by a smaller positive peak (P1). Higher stimulation intensity or longer stimulation duration gradually increased N1 amplitude and reduced N1 variability across trials. A combination of stimulation intensities of 5-10 mW with stimulus durations of 1-10 ms were generally sufficient to elicit a robust transcallosal response in most animal, with our optic fiber setup. Optogenetically stimulated excitatory neurons in M1 can reliably evoke a transcallosal response in anesthetized rats. Characterizing the relationship between "stimulation dose" and "response magnitude" (i.e., the gain function) of transcallosal M1-to-M1 excitatory connections can be used to optimize the variables of optogenetic stimulation and ensure stimulation efficacy.

4.
Acta Neuropathol Commun ; 10(1): 113, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974377

RESUMO

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease characterized by the accumulation of aggregated amyloid beta (Aß) and hyperphosphorylated tau along with a slow decline in cognitive functions. Unlike advanced AD, the initial steps of AD pathophysiology have been poorly investigated, partially due to limited availability of animal models focused on the early, plaque-free stages of the disease. The aim of this study was to evaluate the early behavioral, anatomical and molecular alterations in wild-type rats following intracerebroventricular injections of human Aß oligomers (AßOs). Bioactive human AD and nondemented control brain tissue extracts were characterized using ELISA and proteomics approaches. Following a bilateral infusion, rats underwent behavioral testing, including the elevated plus maze, social recognition test, Morris water maze and Y-maze within 6 weeks postinjection. An analysis of brain structure was performed with manganese-enhanced MRI. Collected brain tissues were analyzed using stereology, immunohistochemistry, ELISA and qPCR. No sensorimotor deficits affecting motor performance on different maze tasks were observed, nor was spatial memory disturbed in AD rats. In contrast, a significant impairment of social memory became evident at 21 days postinjection. This deficit was associated with a significantly decreased volume of the lateral entorhinal cortex and a tendency toward a decrease in the total brain volume. Significant increase of cleaved caspase-3-positive cells, microglial activation and proinflammatory responses accompanied by altered expression of synaptic markers were observed in the hippocampus of AD rats with immunohistochemical and qPCR approaches at 6 weeks postinjection. Our data suggest that the social memory impairment observed in AßO-injected rats might be determined by neuroinflammatory responses and synaptopathy. An infusion of native oligomeric Aß in the rat brain represents a feasible tool to model early plaque-free events associated with AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto/fisiologia , Doenças Neurodegenerativas/metabolismo , Placa Amiloide/metabolismo , Ratos
5.
Cell Mol Life Sci ; 79(6): 336, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657417

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a rare, progressive, neurodegenerative disorder presenting glia pathology. Still, disease etiology and pathophysiology are unknown, but neuro-inflammation and vascular disruption may be contributing factors to the disease progression. Here, we performed an ex vivo deep proteome profiling of the prefrontal cortex of MSA patients to reveal disease-relevant molecular neuropathological processes. Observations were validated in plasma and cerebrospinal fluid (CSF) of novel cross-sectional patient cohorts. METHODS: Brains from 45 MSA patients and 30 normal controls (CTRLs) were included. Brain samples were homogenized and trypsinized for peptide formation and analyzed by high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Results were supplemented by western blotting, immuno-capture, tissue clearing and 3D imaging, immunohistochemistry and immunofluorescence. Subsequent measurements of glial fibrillary acid protein (GFAP) and neuro-filament light chain (NFL) levels were performed by immunoblotting in plasma of 20 MSA patients and 20 CTRLs. Finally, we performed a proteome profiling of 144 CSF samples from MSA and CTRLs, as well as other parkinsonian disorders. Data were analyzed using relevant parametric and non-parametric two-sample tests or linear regression tests followed by post hoc tests corrected for multiple testing. Additionally, high-throughput bioinformatic analyses were applied. RESULTS: We quantified more than 4,000 proteins across samples and identified 49 differentially expressed proteins with significantly different abundances in MSA patients compared with CTRLs. Pathway analyses showed enrichment of processes related to fibrinolysis and complement cascade activation. Increased fibrinogen subunit ß (FGB) protein levels were further verified, and we identified an enriched recognition of FGB by IgGs as well as intra-parenchymal accumulation around blood vessels. We corroborated blood-brain barrier leakage by a significant increase in GFAP and NFL plasma levels in MSA patients that correlated to disease severity and/or duration. Proteome profiling of CSF samples acquired during the disease course, confirmed increased total fibrinogen levels and immune-related components in the soluble fraction of MSA patients. This was also true for the other atypical parkinsonian disorders, dementia with Lewy bodies and progressive supra-nuclear palsy, but not for Parkinson's disease patients. CONCLUSION: Our results implicate activation of the fibrinolytic cascade and immune system in the brain as contributing factors in MSA associated with a more severe disease course.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Encéfalo/metabolismo , Cromatografia Líquida , Estudos Transversais , Progressão da Doença , Fibrinogênio/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Proteoma/metabolismo , Espectrometria de Massas em Tandem
6.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35742998

RESUMO

Multiple-system trophy (MSA) and Parkinson's Disease (PD) are both progressive, neurodegenerative diseases characterized by neuropathological deposition of aggregated alpha-synuclein (αSyn). The causes behind this aggregation are still unknown. We have reported aberrancies in MSA and PD patients in naturally occurring autoantibodies (nAbs) against αSyn (anti-αSyn-nAbs), which are important partakers in anti-aggregatory processes, immune-mediated clearance, and anti-inflammatory functions. To elaborate further on the timeline of autoimmune aberrancies towards αSyn, we investigated here the Immunoglobulin (Ig) affinity profile and subclass composition (IgG-total, IgG1-4 and IgM) of anti-αSyn-nAbs in serum samples from prodromal (p) phases of MSA and PD. Using an electrochemiluminescence competition immunoassay, we confirmed that the repertoire of high-affinity anti-αSyn-nAbs is significantly reduced in pMSA and pPD. Further, we demonstrated that pPD had increased anti-αSyn IgG-total levels compared to pMSA and controls, concordant with increased anti-αSyn IgG1 levels in pPD. Anti-αSyn IgG2 and IgG4 levels were reduced in pMSA and pPD compared with controls, whereas anti-αSyn IgG3 levels were reduced in pMSA compared to pPD and controls. The results indicate that the impaired reactivity towards αSyn occurs prior to disease onset. The apparent lack of high-affinity anti-αSyn nAbs may result in reduced clearance of αSyn, leading to aggregation of the protein. Thus, this study provides novel insights into possible causes behind the pathogenesis in synucleinopathies such as MSA and PD.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Autoanticorpos , Humanos , Imunoglobulina G , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
7.
Brain Behav Evol ; 96(1): 37-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34284396

RESUMO

Correlations between differences in animal behavior and brain structures have been used to infer function of those structures. Brain region size has especially been suggested to be important for an animal's behavioral capability, controlled by specific brain regions. The oval nucleus of the mesopallium (MO) is part of the anterior forebrain vocal learning pathway in the parrot brain. Here, we compare brain volume and total number of neurons in MO of three parrot species (the peach-fronted conure, Eupsittula aurea, the peach-faced lovebird, Agapornis roseicollis, and the budgerigar, Melopsittacus undulatus), relating the total neuron numbers with the vocal response to playbacks of each species. We find that individuals with the highest number of neurons in MO had the shortest vocal latency. The peach-fronted conures showed the shortest vocal latency and largest number of MO neurons, the peach-faced lovebird had intermediary levels of both, and the budgerigar had the longest latency and least number of neurons. These findings indicate the MO nucleus as one candidate region that may be part of what controls the vocal capacity of parrots.


Assuntos
Melopsittacus , Papagaios , Animais , Humanos , Neurônios , Prosencéfalo , Vocalização Animal
8.
Parkinsonism Relat Disord ; 87: 98-104, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34020303

RESUMO

INTRODUCTION: Ubiquitous naturally occurring autoantibodies (nAbs) against alpha-synuclein (α-syn) may play important roles in the pathogenesis of Multiple System Atrophy (MSA) and Parkinson's disease (PD). Recently, we reported reduced high-affinity/avidity anti-α-syn nAbs levels in plasma from MSA and PD patients, along with distinct inter-group immunoglobulin (Ig)G subclass distributions. The extent to which these observations in plasma may reflect corresponding levels in the cerebrospinal fluid (CSF) is unknown. METHODS: Using competitive and indirect ELISAs, we investigated the affinity/avidity of CSF anti-α-syn nAbs as well as the CSF and plasma distribution of IgG subclasses and IgM nAbs in a cross-sectional cohort of MSA and PD patients. RESULTS: Repertoires of high-affinity/avidity anti-α-syn IgG nAbs were reduced in CSF samples from MSA and PD patients compared to controls. Furthermore, anti-α-syn IgM nAb levels were relatively lower in CSF and plasma from MSA patients but were reduced only in plasma from PD patients. Interestingly, anti-α-syn IgG subclasses presented disease-specific profiles both in CSF and plasma. Anti-α-syn IgG1, IgG2 and IgG3 levels were relatively increased in CSF of MSA patients, whereas PD patients showed increased anti-α-syn IgG2 and reduced anti-α-syn IgG4 levels. CONCLUSIONS: Differences in the plasma/CSF distribution of anti-α-syn nAbs seem to be a common feature of synucleinopathies. Our data add further support to the notion that MSA and PD patients may have compromised immune reactivity towards α-syn. The differing α-syn-specific systemic immunological responses may reflect their specific disease pathophysiologies. These results are encouraging for further investigation of these immunological mechanisms in neurodegenerative diseases.


Assuntos
Autoanticorpos , Atrofia de Múltiplos Sistemas , Doença de Parkinson , alfa-Sinucleína/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Anti-Idiotípicos/sangue , Anticorpos Anti-Idiotípicos/líquido cefalorraquidiano , Anticorpos Anti-Idiotípicos/imunologia , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Autoanticorpos/imunologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/sangue , Atrofia de Múltiplos Sistemas/líquido cefalorraquidiano , Atrofia de Múltiplos Sistemas/imunologia , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/imunologia
9.
Neuroscience ; 459: 142-152, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577952

RESUMO

The thalamus is a brain region consisting of anatomical and functional connections between various spinal, subcortical, and cortical regions, which has a putative role in the clinical manifestation of Multiple System Atrophy (MSA). Previous stereological studies have reported significant anatomical alterations in diverse brain regions of MSA patients, including the cerebral cortex, basal ganglia and white matter, but no quantitative studies have examined the thalamus. To establish the extent of thalamic involvement, we applied stereological methods to estimate the total number of neurons and glial cells (oligodendrocytes, astrocytes and microglia) as well as the volume in two thalamic sub-regions, the mediodorsal nucleus (MDT) and the anterior principal nucleus (APn), in brains from ten MSA patients and 11 healthy control subjects. Compared to healthy controls, MSA patients had significantly fewer neurons (26%) in the MDT, but not the APn. We also found significantly more astrocytes (32%) and microglia (54%) in the MDT, with no such changes in the APn. Finally, we saw no group differences in the total number of oligodendrocytes. Our findings show a region-specific loss of thalamic neurons that occurs without loss of oligodendrocytes, whereas thalamic microgliosis seems to occur alongside astrogliosis. These pathological changes in the thalamus may contribute to the cognitive impairment seen in most patients with MSA.


Assuntos
Atrofia de Múltiplos Sistemas , Gânglios da Base , Humanos , Neuroglia , Neurônios , Tálamo
10.
Cereb Cortex ; 31(1): 650-657, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939536

RESUMO

Our access to a unique material of postmortem brains obtained from decades of data collection enabled a stereological analysis of the neuron numbers and correlation of results with individual premorbid intelligence quotient (IQ) data. In our sample of 50 brains from men, we find that IQ does not correlate with the number of brain cells in the human neocortex and was only weakly correlated to brain weight. Our stereological examination extended to measures of several other parameters that might be of relevance to intelligence, including numbers of cerebral glial cells (astrocytes, oligodendrocytes, and microglia) and the volume of key areas in the gray and white matter and of the cerebral ventricles, also showing near-zero nonsignificant correlations to IQ.


Assuntos
Astrócitos/patologia , Microglia/patologia , Neurônios/patologia , Oligodendroglia/patologia , Encéfalo/patologia , Ventrículos Cerebrais/patologia , Humanos , Inteligência/fisiologia , Testes de Inteligência , Masculino
11.
Artigo em Inglês | MEDLINE | ID: mdl-33361387

RESUMO

OBJECTIVE: We hypothesize alterations in the quality and quantity of anti-43-kDa TAR DNA-binding protein (TDP-43) naturally occurring autoantibodies (NAbs) in patients with amyotrophic lateral sclerosis (ALS); therefore, we assessed relative binding properties of anti-TDP-43 NAbs composite in plasma from patients with ALS in comparison with healthy individuals. METHODS: ELISA competition assay was used to explore the apparent avidity/affinity of anti-TDP-43 NAbs in plasma from 51 normal controls and 30 patients with ALS. Furthermore, the relative levels of anti-TDP-43 NAbs within the immunoglobulin (Ig) classes of IgG (isotype IgG1-4) and IgMs were measured using classical indirect ELISA. The occurring results were hereafter correlated with the measures of disease duration and disease progression. RESULTS: High-avidity/affinity anti-TDP-43 NAbs levels were significantly reduced in plasma samples from patients with ALS. In addition, a significant decrease in relative levels of anti-TDP-43 IgG3 and IgM NAbs and a significant increase in anti-TDP-43 IgG4 NAbs were observed in ALS plasma vs controls. Furthermore, a decrease in global IgM and an increase in IgG4 levels were observed in ALS. These aberrations of humoral immunity correlated with disease duration, but did not correlate with ALS Functional Rating Scale-Revised scores. CONCLUSIONS: Our results may suggest TDP-43-specific immune aberrations in patients with ALS. The skewed immune profiles observed in patients with ALS could indicate a deficiency in the clearance capacity and/or blocking of TDP-43 transmission and propagation. The decrease in levels of high affinity/avidity anti-TDP-43 NAbs and IgMs correlates with disease progression and may be disease predictors.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Proteínas de Ligação a DNA/sangue , Proteínas de Ligação a DNA/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/epidemiologia , Biomarcadores/sangue , Dinamarca/epidemiologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 117(52): 33649-33659, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376224

RESUMO

Axonal conduction velocity, which ensures efficient function of the brain network, is related to axon diameter. Noninvasive, in vivo axon diameter estimates can be made with diffusion magnetic resonance imaging, but the technique requires three-dimensional (3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-holotomography images of white matter samples from the corpus callosum of a monkey brain reveal that blood vessels, cells, and vacuoles affect axonal diameter and trajectory. Within single axons, we find that the variation in diameter and conduction velocity correlates with the mean diameter, contesting the value of precise diameter determination in larger axons. These complex 3D axon morphologies drive previously reported 2D trends in axon diameter and g-ratio. Furthermore, we find that these morphologies bias the estimates of axon diameter with diffusion magnetic resonance imaging and, ultimately, impact the investigation and formulation of the axon structure-function relationship.


Assuntos
Axônios/fisiologia , Animais , Feminino , Haplorrinos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Bainha de Mielina/metabolismo , Relação Estrutura-Atividade , Vacúolos/metabolismo , Substância Branca/anatomia & histologia
13.
Transl Psychiatry ; 10(1): 239, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681022

RESUMO

The schizophrenia-associated gene, BRD1, encodes an epigenetic regulator in which chromatin interactome is enriched with genes implicated in mental health. Alterations in histone modifications and epigenetic regulation contribute to brain transcriptomic changes in affective disorders and preclinical data supports a role for BRD1 in psychopathology. However, the implication of BRD1 on affective pathology remains poorly understood. In this study, we assess affective behaviors and associated neurobiology in Brd1+/- mice along with their responses to Fluoxetine and Imipramine. This involves behavioral, neurostructural, and neurochemical characterizations along with regional cerebral gene expression profiling combined with integrative functional genomic analyses. We report behavioral changes in female Brd1+/- mice with translational value to depressive symptomatology that can be alleviated by the administration of antidepressant medications. Behavioral changes are accompanied by altered brain morphometry and imbalances in monoaminergic systems. In accordance, gene expression changes across brain tissues reveal altered neurotransmitter signaling and cluster in functional pathways associated with depression including 'Adrenergic-, GPCR-, cAMP-, and CREB/CREM-signaling'. Integrative gene expression analysis specifically links changes in amygdaloid intracellular signaling activity to the behavioral treatment response in Brd1+/- mice. Collectively, our study highlights the importance of BRD1 as a modulator of affective pathology and adds to our understanding of the molecular mechanisms underlying affective disorders and their treatment response.


Assuntos
Histona Acetiltransferases , Esquizofrenia , Animais , Depressão/genética , Epigênese Genética , Feminino , Expressão Gênica , Camundongos , Esquizofrenia/genética
14.
Sci Rep ; 10(1): 12559, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704154

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Acta Neuropathol Commun ; 8(1): 29, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32151281

RESUMO

Multiple system atrophy (MSA) is a rare disease with a fatal outcome. To date, little is known about the molecular processes underlying disease development. Its clinical overlap with related neurodegenerative movement disorders underlines the importance for expanding the knowledge of pathological brain processes in MSA patients to improve distinction from similar diseases. In the current study, we investigated DNA methylation changes in brain samples from 41 MSA patients and 37 healthy controls. We focused on the prefrontal cortex, a moderately affected area in MSA. Using Illumina MethylationEPIC arrays, we investigated 5-methylcytosine (5mC) as well as 5-hydroxymethylcytosine (5hmC) changes throughout the genome. We identified five significantly different 5mC probes (adj. P < 0.05), of which one probe mapping to the AREL1 gene involved in antigen presentation was decreased in MSA patients. This decrease correlated with increased 5hmC levels. Further, we identified functional DNA methylation modules involved in inflammatory processes. As expected, the decreased 5mC levels on AREL1 was concordant with increased gene expression levels of both AREL1 as well as MHC Class I HLA genes in MSA brains. We also investigated whether these changes in antigen-related processes in the brain associated with changes in peripheral mononuclear cells. Using flow cytometry on an independent cohort of MSA patients, we identified a decrease in circulating non-classical CD14+CD16++ blood monocytes, whereas T and NK cell populations were unchanged. Taken together, our results support the view of an active neuroimmune response in brains of MSA patients.


Assuntos
Antígenos HLA/genética , Atrofia de Múltiplos Sistemas/genética , Córtex Pré-Frontal/metabolismo , Ubiquitina-Proteína Ligases/genética , 5-Metilcitosina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Encéfalo , Estudos de Casos e Controles , Metilação de DNA , Epigênese Genética , Epigenoma , Feminino , Citometria de Fluxo , Antígenos HLA/imunologia , Humanos , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Atrofia de Múltiplos Sistemas/imunologia , Linfócitos T/imunologia , Transcriptoma
16.
Brain Pathol ; 30(3): 576-588, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31769073

RESUMO

Multiple system atrophy (MSA) and Parkinson's disease (PD) are synucleinopathies characterized by aggregation of α-synuclein in brain cells. Recent studies have shown that morphological changes in terms of cerebral nerve cell loss and increase in glia cell numbers, the degree of brain atrophy and molecular and epidemiological findings are more severe in MSA than PD. In the present study, we performed a stereological comparison of cerebellar volumes, granule and Purkinje cells in 13 patients diagnosed with MSA [8 MSA-P (striatonigral subtype) and 5 MSA-C (olivopontocerebellar subtype)], 12 PD patients, and 15 age-matched control subjects. Only brains from MSA-C patients showed a reduction in the total number of Purkinje cells (anterior lobe) whereas both MSA-P and MSA-C patients had reduced Purkinje cell volumes (perikaryons and nuclei volume). The cerebellum of both diseases showed a reduction in the white matter volume compared to controls. The number of granule cells was unaffected in both diseases. Analyses of cell type-specific mRNA expression supported our structural data. This study of the cerebellum is in line with previous findings in the cerebrum and demonstrates that the degree of morphological changes is more pronounced in MSA-C than MSA-P and PD. Further, our results support an explicit involvement of cerebellar Purkinje cells and white matter connectivity in MSA-C > MSA-P and points to the potential importance of white matter alterations in PD pathology.


Assuntos
Cerebelo/patologia , Atrofia de Múltiplos Sistemas/patologia , Neurônios/patologia , Doença de Parkinson/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Atrofia/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/patologia , Tamanho do Órgão/fisiologia , Células de Purkinje/patologia
17.
Front Immunol ; 10: 2253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616427

RESUMO

Aggregation of alpha-synuclein (α-syn) is considered to be the major pathological hallmark and driving force of Multiple System Atrophy (MSA) and Parkinson's disease (PD). Immune dysfunctions have been associated with both MSA and PD and recently we reported that the levels of natural occurring autoantibodies (NAbs) with high-affinity/avidity toward α-synuclein are reduced in MSA and PD patients. Here, we aimed to evaluate the plasma immunoglobulin (Ig) composition binding α-syn and other amyloidogenic neuropathological proteins, and to correlate them with disease severity and duration in MSA and PD patients. All participants were recruited from a single neurological unit and the plasma samples were stored for later research at the Bispebjerg Movement Disorder Biobank. All patients were diagnosed according to current consensus criteria. Using multiple variable linear regression analyses, we observed higher levels of anti-α-syn IgG1 and IgG3 NAbs in MSA vs. PD, higher levels of anti-α-syn IgG2 NAbs in PD compared to controls, whereas anti-α-syn IgG4 NAbs were reduced in PD compared to MSA and controls. Anti-α-syn IgM levels were decreased in both MSA and PD. Further our data supported that MSA patients' immune system was affected with reduced IgG1 and IgM global levels compared to PD and controls, with further reduced global IgG2 levels compared to PD. These results suggest distinct autoimmune patterns in MSA and PD. These findings suggest a specific autoimmune physiological mechanism involving responses toward α-syn, differing in neurodegenerative disease with overlapping α-syn pathology.


Assuntos
Autoanticorpos/imunologia , Atrofia de Múltiplos Sistemas/imunologia , Doença de Parkinson/imunologia , alfa-Sinucleína/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/sangue , Atrofia de Múltiplos Sistemas/diagnóstico , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Adulto Jovem , alfa-Sinucleína/sangue
19.
Sci Rep ; 9(1): 7781, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123295

RESUMO

Accumulating evidence suggests neuroinflammation to be an integrated feature of neurodegeneration. Profiling inflammatory mediators across diseases may reveal common and disease-specific signatures. Here, we focused on progressive supranuclear palsy (PSP), a tauopathy presenting motor and cognitive dysfunction. We screened for 21 cytokines and growth factors in the dorsomedial prefrontal cortex of 16 PSP and 16 control brains using different quantitative techniques. We found and validated increased interleukin (IL)-2 protein levels in the PSP group expressed locally by neurons and glia cells. We further investigated central players in neuroinflammatory pathways and found increased mRNA expression of glycogen synthase kinase 3 beta (GSK3B). IL-2 and GSK3B proteins are T and natural killer (NK) cell regulators and have previously been associated with other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple system atrophy. In addition, we identified a shift in peripheral CD4+ and CD8+ T cell populations toward increased numbers of memory and reduced numbers of naive T cells. We also observed increased numbers of CD56+ NK cells, but not of CD56+CD57+ or CD57+ NK cells. Our findings suggest a role for IL-2 in PSP disease processes and point toward active and possibly dysfunctional peripheral immune responses in these patients.


Assuntos
Interleucina-2/metabolismo , Córtex Pré-Frontal/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Linfócitos T/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo
20.
Neurocrit Care ; 30(3): 557-568, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30972614

RESUMO

BACKGROUND: Spreading depolarizations (SDs) occur in 50-60% of patients after surgical treatment of severe traumatic brain injury (TBI) and are independently associated with unfavorable outcomes. Here we performed a pilot study to examine the relationship between SDs and various types of intracranial lesions, progression of parenchymal damage, and outcomes. METHODS: In a multicenter study, fifty patients (76% male; median age 40) were monitored for SD by continuous electrocorticography (ECoG; median duration 79 h) following surgical treatment of severe TBI. Volumes of hemorrhage and parenchymal damage were estimated using unbiased stereologic assessment of preoperative, postoperative, and post-ECoG serial computed tomography (CT) studies. Neurologic outcomes were assessed at 6 months by the Glasgow Outcome Scale-Extended. RESULTS: Preoperative volumes of subdural and subarachnoid hemorrhage, but not parenchymal damage, were significantly associated with the occurrence of SDs (P's < 0.05). Parenchymal damage increased significantly (median 34 ml [Interquartile range (IQR) - 2, 74]) over 7 (5, 8) days from preoperative to post-ECoG CT studies. Patients with and without SDs did not differ in extent of parenchymal damage increase [47 ml (3, 101) vs. 30 ml (- 2, 50), P = 0.27], but those exhibiting the isoelectric subtype of SDs had greater initial parenchymal damage and greater increases than other patients (P's < 0.05). Patients with temporal clusters of SDs (≥ 3 in 2 h; n = 10 patients), which included those with isoelectric SDs, had worse outcomes than those without clusters (P = 0.03), and parenchymal damage expansion also correlated with worse outcomes (P = 0.01). In multivariate regression with imputation, both clusters and lesion expansion were significant outcome predictors. CONCLUSIONS: These results suggest that subarachnoid and subdural blood are important primary injury factors in provoking SDs and that clustered SDs and parenchymal lesion expansion contribute independently to worse patient outcomes. These results warrant future prospective studies using detailed quantification of TBI lesion types to better understand the relationship between anatomic and physiologic measures of secondary injury.


Assuntos
Contusão Encefálica/patologia , Contusão Encefálica/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Hematoma Subdural Agudo/patologia , Hematoma Subdural Agudo/fisiopatologia , Hemorragia Subaracnoídea Traumática/patologia , Hemorragia Subaracnoídea Traumática/fisiopatologia , Adulto , Contusão Encefálica/diagnóstico por imagem , Eletrocorticografia , Feminino , Seguimentos , Escala de Resultado de Glasgow , Hematoma Subdural Agudo/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Índice de Gravidade de Doença , Hemorragia Subaracnoídea Traumática/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...