Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
NPJ Parkinsons Dis ; 10(1): 105, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773124

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive motor symptoms and alpha-synuclein (αsyn) aggregation in the nervous system. For unclear reasons, PD patients with certain GBA1 mutations (GBA-PD) have a more aggressive clinical progression. Two testable hypotheses that can potentially account for this phenomenon are that GBA1 mutations promote αsyn spread or drive the generation of highly pathogenic αsyn polymorphs (i.e., strains). We tested these hypotheses by treating homozygous GBA1 D409V knockin (KI) mice with human α-syn-preformed fibrils (PFFs) and treating wild-type mice (WT) with several αsyn-PFF polymorphs amplified from brain autopsy samples collected from patients with idiopathic PD and GBA-PD patients with either homozygous or heterozygous GBA1 mutations. Robust phosphorylated-αsyn (PSER129) positive pathology was observed at the injection site (i.e., the olfactory bulb granule cell layer) and throughout the brain six months following PFF injection. The PFF seeding efficiency and degree of spread were similar regardless of the mouse genotype or PFF polymorphs. We found that PFFs amplified from the human brain, regardless of patient genotype, were generally more effective seeders than wholly synthetic PFFs (i.e., non-amplified); however, PFF concentration differed between these two studies, which might also account for the observed differences. To investigate whether the molecular composition of pathology differed between different seeding conditions, we performed Biotinylation by Antibody Recognition on PSER129 (BAR-PSER129). We found that for BAR-PSER129, the endogenous PSER129 pool dominated identified interactions, and thus, very few potential interactions were explicitly identified for seeded pathology. However, we found Dynactin Subunit 2 (Dctn2) interaction was shared across all PFF conditions, and NCK Associated Protein 1 (Nckap1) and Adaptor Related Protein Complex 3 Subunit Beta 2 (Ap3b2) were unique to PFFs amplified from GBA-PD brains of heterozygous mutation carriers. In conclusion, both the genotype and αsyn strain had little effect on overall seeding efficacy and global PSER129-interactions.

2.
Clin Neurophysiol ; 162: 41-52, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555666

RESUMO

OBJECTIVE: We aimed to gain further insight into previously reported beneficial effects of subthalamic nucleus deep brain stimulation (STN-DBS) on visually-guided saccades by examining the effects of unilateral compared to bilateral stimulation, paradigm, and target eccentricity on saccades in individuals with Parkinson's disease (PD). METHODS: Eleven participants with PD and STN-DBS completed the visually-guided saccade paradigms with OFF, RIGHT, LEFT, and BOTH stimulation. Rightward saccade performance was evaluated for three paradigms and two target eccentricities. RESULTS: First, we found that BOTH and LEFT increased gain, peak velocity, and duration compared to OFF stimulation. Second, we found that BOTH and LEFT stimulation decreased latency during the gap and step paradigms but had no effect on latency during the overlap paradigm. Third, we found that RIGHT was not different compared to OFF at benefiting rightward saccade performance. CONCLUSIONS: Left unilateral and bilateral stimulation both improve the motor outcomes of rightward visually-guided saccades. Additionally, both improve latency, a cognitive-motor outcome, but only in paradigms when attention does not require disengagement from a present stimulus. SIGNIFICANCE: STN-DBS primarily benefits motor and cognitive-motor aspects of visually-guided saccades related to reflexive attentional shifting, with the latter only evident when the fixation-related attentional system is not engaged.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Movimentos Sacádicos , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Movimentos Sacádicos/fisiologia , Núcleo Subtalâmico/fisiopatologia , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estimulação Luminosa/métodos
3.
Ann Clin Transl Neurol ; 11(4): 899-904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38337113

RESUMO

OBJECTIVE: Mutations in the glucocerebrosidase (GBA1) gene and subthalamic nucleus deep brain stimulation (STN-DBS) are independently associated with cognitive dysfunction in persons with Parkinson's disease (PwP). We hypothesized that PwP with both GBA1 mutations and STN-DBS are at greater risk of cognitive dysfunction than PwP with only GBA1 mutations or STN-DBS, or neither. In this study, we determined the pattern of cognitive dysfunction in PwP based on GBA1 mutation status and STN-DBS treatment. METHODS: PwP who are GBA1 mutation carriers with or without DBS (GBA1+DBS+, GBA1+DBS-), and noncarriers with or without DBS (GBA1-DBS+, GBA1-DBS-) were included. Using the NIH Toolbox, cross-sectional differences in response inhibition, processing speed, and episodic memory were compared using analysis of variance with adjustment for relevant covariates. RESULTS: Data were available for 9 GBA1+DBS+, 14 GBA1+DBS-, 17 GBA1-DBS+, and 26 GBA1-DBS- PwP. In this cross-sectional study, after adjusting for covariates, we found that performance on the Flanker test (measure of response inhibition) was lower in GBA1+DBS+ PwP compared with GBA1-DBS+ PwP (P = 0.030). INTERPRETATION: PwP who carry GBA1 mutations and have STN-DBS have greater impaired response inhibition compared with PwP with STN-DBS but without GBA1 mutations. Longitudinal data, including preoperative scores, are required to definitively determine whether GBA1 mutation carriers respond differently to STN-DBS, particularly in the domain of response inhibition.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/terapia , Estudos Transversais , Glucosilceramidase/genética
4.
Mov Disord ; 38(12): 2155-2162, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916476

RESUMO

Genetic subtyping of patients with Parkinson's disease (PD) may assist in predicting the cognitive and motor outcomes of subthalamic deep brain stimulation (STN-DBS). Practical questions were recently raised with the emergence of new data regarding suboptimal cognitive outcomes after STN-DBS in individuals with PD associated with pathogenic variants in glucocerebrosidase gene (GBA1-PD). However, a variety of gaps and controversies remain. (1) Does STN-DBS truly accelerate cognitive deterioration in GBA1-PD? If so, what is the clinical significance of this acceleration? (2) How should the overall risk-to-benefit ratio of STN-DBS in GBA1-PD be established? (3) If STN-DBS has a negative effect on cognition in GBA1-PD, how can this effect be minimized? (4) Should PD patients be genetically tested before STN-DBS? (5) How should GBA1-PD patients considering STN-DBS be counseled? We aim to summarize the currently available relevant data and detail the gaps and controversies that exist pertaining to these questions. In the absence of evidence-based data, all authors strongly agree that clinicians should not categorically deny DBS to PD patients based solely on genotype (GBA1 status). We suggest that PD patients considering DBS may be offered genetic testing for GBA1, where available and feasible, so the potential risks and benefits of STN-DBS can be properly weighed by both the patient and clinician. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Cognitivos , Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Cognição , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Parkinson/complicações , Núcleo Subtalâmico/fisiologia
5.
Front Hum Neurosci ; 17: 1224611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37850040

RESUMO

Background: Antiparkinson medication and subthalamic nucleus deep brain stimulation (STN-DBS), two common treatments of Parkinson's disease (PD), effectively improve skeletomotor movements. However, evidence suggests that these treatments may have differential effects on eye and limb movements, although both movement types are controlled through the parallel basal ganglia loops. Objective: Using a task that requires both eye and upper limb movements, we aimed to determine the effects of medication and STN-DBS on eye and upper limb movement performance. Methods: Participants performed a visually-guided reaching task. We collected eye and upper limb movement data from participants with PD who were tested both OFF and ON medication (n = 34) or both OFF and ON bilateral STN-DBS while OFF medication (n = 11). We also collected data from older adult healthy controls (n = 14). Results: We found that medication increased saccade latency, while having no effect on reach reaction time (RT). Medication significantly decreased saccade peak velocity, while increasing reach peak velocity. We also found that bilateral STN-DBS significantly decreased saccade latency while having no effect on reach RT, and increased saccade and reach peak velocity. Finally, we found that there was a positive relationship between saccade latency and reach RT, which was unaffected by either treatment. Conclusion: These findings show that medication worsens saccade performance and benefits reaching performance, while STN-DBS benefits both saccade and reaching performance. We explore what the differential beneficial and detrimental effects on eye and limb movements suggest about the potential physiological changes occurring due to treatment.

6.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662402

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive motor symptoms and alpha-synuclein (αsyn) aggregation in the nervous system. For unclear reasons, PD patients with certain GBA mutations (GBA-PD) have a more aggressive clinical progression. Two testable hypotheses that can potentially account for this phenomenon are that GBA1 mutations promote αsyn spread or drive the generation of highly pathogenic αsyn polymorphs (i.e., strains). We tested these hypotheses by treating homozygous GBA1 D409V knockin (KI) mice with human α-syn-preformed fibrils (PFFs) and treating wild-type mice (WT) with several αsyn-PFF polymorphs amplified from brain autopsy samples collected from patients with idiopathic PD and GBA-PD patients with either homozygous or heterozygous GBA1 mutations. Robust phosphorylated-αsyn (PSER129) positive pathology was observed at the injection site (i.e., the olfactory bulb granular layer) and throughout the brain six months following PFF injection. The PFF seeding efficiency and degree of spread were similar regardless of the mouse genotype or PFF polymorphs. We found that PFFs amplified from the human brain, regardless of patient genotype, were generally more effective seeders than wholly synthetic PFFs (i.e., non-amplified); however, PFF concentration differed between these two studies, and this might also account for the observed differences. To investigate whether the molecular composition of pathology differed between different seeding conditions, we permed Biotinylation by Antibody Recognition on PSER129 (BAR-PSER129). We found that for BAR-PSER129, the endogenous PSER129 pool dominated identified interactions, and thus, very few potential interactions were explicitly identified for seeded pathology. However, we found Dctn2 interaction was shared across all PFF conditions, and Nckap1 and Ap3b2 were unique to PFFs amplified from GBA-PD brains of heterozygous mutation carriers. In conclusion, both the genotype and αsyn strain had little effect on overall seeding efficacy and global PSER129-interactions.

8.
JAMA Neurol ; 80(8): 860-867, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428482

RESUMO

Importance: Many disease-modifying therapies (DMTs) have been approved for multiple sclerosis (MS) in the past 2 decades. Research evaluating how these approvals have changed real-world prescribing patterns is scarce. Objective: To evaluate patterns in DMT initiations between 2001 and 2020 among commercially insured US adults and children with MS. Design, Setting, and Participants: This serial cross-sectional study was conducted from 2001 through 2020 (mean patient enrollment duration, 4.8 years) and used US commercial claims data (MarketScan). Analysis took place between January 2022 and March 2023. Of 287 084 patients with MS identified, 113 583 patients (113 095 adults and 488 children) with MS newly initiated at least 1 DMT. Exposure: New initiation episode of a DMT, defined as no claim for the same DMT in the previous year. Main Outcome Measure: The proportion of total DMT initiations per year attributable to each DMT. Trends in initiations were evaluated annually. Results: The study team identified 153 846 DMT initiation episodes among adults (median age, 46 [IQR, 38-53) years]; 86 133 female [76.2%]) and 583 among children (median age, 16 (IQR, 14-17) years; 346 female [70.9%]). Among adults, use of platform injectables showed an absolute decline of 73.8% over the study period, driven by a 61.2% reduction in interferon ß initiations (P < .001 for trend). In contrast, the 2010 introduction of oral DMTs led to a rise in their use from 1.1% (2010) to 62.3% (2020) of all DMT initiations (P = .002 for trend). Infusion therapy initiations remained relatively low, accounting for 3.2% of all initiations since their introduction in 2004 but increased modestly annually after ocrelizumab was introduced (2017), reaching 8.2% of all initiations in 2020 (P < .001 for trend). Children showed similar initiation patterns, except for preferred oral therapy. Between 2019 and 2020, dimethyl fumarate was the most commonly initiated DMT in adults (23.3% to 27.2% of all initiations), while in children fingolimod was the most commonly initiated (34.8% to 68.8%). Conclusions and Relevance: Current MS treatment guidelines emphasize shared decision-making between patients and clinicians to balance treatment efficacy, safety, cost, and convenience. This study found that oral DMTs were the predominant DMT type initiated by 2020. The cause of this shift cannot be determined from this study, but may reflect several factors, including convenience of administration, direct-to-consumer advertising, or insurance restrictions.


Assuntos
Esclerose Múltipla , Humanos , Adulto , Criança , Feminino , Pessoa de Meia-Idade , Adolescente , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/epidemiologia , Imunossupressores , Estudos Transversais , Cloridrato de Fingolimode , Interferon beta
9.
J Parkinsons Dis ; 13(6): 917-935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522216

RESUMO

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) improves intensive aspects of movement (velocity) in people with Parkinson's disease (PD) but impairs the more cognitively demanding coordinative aspects of movement (error). We extended these findings by evaluating STN-DBS induced changes in intensive and coordinative aspects of movement during a memory-guided reaching task with varying retention delays. OBJECTIVE: We evaluated the effect of STN-DBS on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to healthy controls (HC). METHODS: Eleven participants with PD completed the motor section of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) and performed a memory-guided reaching task under four different STN-DBS conditions (DBS-OFF, DBS-RIGHT, DBS-LEFT, and DBS-BOTH) and two retention delays (0.5 s and 5 s). An additional 13 HC completed the memory-guided reaching task. RESULTS: Unilateral and bilateral STN-DBS improved the MDS-UPDRS III scores. In the memory-guided reaching task, both unilateral and bilateral STN-DBS increased the intensive aspects of movement (amplitude and velocity) in the direction toward HC but impaired coordinative aspects of movement (error) away from the HC. Furthermore, movement time was decreased but reaction time was unaffected by STN-DBS. Shorter retention delays increased amplitude and velocity, decreased movement times, and decreased error, but increased reaction times in the participants with PD. There were no interactions between STN-DBS condition and retention delay. CONCLUSION: STN-DBS may affect cognitive-motor functioning by altering activity throughout cortico-basal ganglia networks and the oscillatory activity subserving them.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Movimento/fisiologia , Cognição , Resultado do Tratamento
10.
Mov Disord ; 38(8): 1527-1535, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37310233

RESUMO

BACKGROUND: There is growing clinical and research utilization of genetic testing in Parkinson's disease (PD), including direct-to-consumer testing. OBJECTIVES: The aim is to determine the international landscape of genetic testing in PD to inform future worldwide recommendations. METHODS: A web-based survey assessing current practices, concerns, and barriers to genetic testing and counseling was administered to the International Parkinson and Movement Disorders Society membership. RESULTS: Common hurdles across sites included cost and access to genetic testing, and counseling, as well as education on genetic counseling. Region-dependent differences in access to and availability of testing and counseling were most notable in Africa. High-income countries also demonstrated heterogeneity, with European nations more likely to have genetic testing covered through insurance than Pan-American and Asian countries. CONCLUSIONS: This survey highlights not only diversity of barriers in different regions but also the shared and highly actionable needs for improved education and access to genetic counseling and testing for PD worldwide. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/psicologia , Testes Genéticos , Aconselhamento
11.
Mov Disord ; 38(8): 1384-1396, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365908

RESUMO

Genetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Testes Genéticos
12.
Front Neurol ; 14: 1308698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162443

RESUMO

Background: Fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disease that affects carriers of a 55-200 CGG repeat expansion in the fragile X messenger ribonucleoprotein 1 (FMR1) gene, may be given an incorrect initial diagnosis of Parkinson's disease (PD) or essential tremor (ET) due to overlapping motor symptoms. It is critical to characterize distinct phenotypes in FXTAS compared to PD and ET to improve diagnostic accuracy. Fast as possible (FP) speed and dual-task (DT) paradigms have the potential to distinguish differences in gait performance between the three movement disorders. Therefore, we sought to compare FXTAS, PD, and ET patients using quantitative measures of functional mobility and gait under self-selected (SS) speed, FP, and DT conditions. Methods: Participants with FXTAS (n = 22), PD (n = 23), ET (n = 20), and controls (n = 20) underwent gait testing with an inertial sensor system (APDM™). An instrumented Timed Up and Go test (i-TUG) was used to measure movement transitions, and a 2-min walk test (2MWT) was used to measure gait and turn variables under SS, FP, and DT conditions, and dual-task costs (DTC) were calculated. ANOVA and multinomial logistic regression analyses were performed. Results: PD participants had reduced stride lengths compared to FXTAS and ET participants under SS and DT conditions, longer turn duration than ET participants during the FP task, and less arm symmetry than ET participants in SS gait. They also had greater DTC for stride length and velocity compared to FXTAS participants. On the i-TUG, PD participants had reduced sit-to-stand peak velocity compared to FXTAS and ET participants. Stride length and arm symmetry index during the DT 2MWT was able to distinguish FXTAS and ET from PD, such that participants with shorter stride lengths were more likely to have a diagnosis of PD and those with greater arm asymmetry were more likely to be diagnosed with PD. No gait or i-TUG parameters distinguished FXTAS from ET participants in the regression model. Conclusion: This is the first quantitative study demonstrating distinct gait and functional mobility profiles in FXTAS, PD, and ET which may assist in more accurate and timely diagnosis.

13.
Front Neurol ; 13: 980935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324383

RESUMO

Memory-guided movements, vital to daily activities, are especially impaired in Parkinson's disease (PD). However, studies examining the effects of how information is encoded in memory and the effects of common treatments of PD, such as medication and subthalamic nucleus deep brain stimulation (STN-DBS), on memory-guided movements are uncommon and their findings are equivocal. We designed two memory-guided sequential reaching tasks, peripheral-vision or proprioception encoded, to investigate the effects of encoding type (peripheral-vision vs. proprioception), medication (on- vs. off-), STN-DBS (on- vs. off-, while off-medication), and compared STN-DBS vs. medication on reaching amplitude, error, and velocity. We collected data from 16 (analyzed n = 7) participants with PD, pre- and post-STN-DBS surgery, and 17 (analyzed n = 14) healthy controls. We had four important findings. First, encoding type differentially affected reaching performance: peripheral-vision reaches were faster and more accurate. Also, encoding type differentially affected reaching deficits in PD compared to healthy controls: peripheral-vision reaches manifested larger deficits in amplitude. Second, the effect of medication depended on encoding type: medication had no effect on amplitude, but reduced error for both encoding types, and increased velocity only during peripheral-vision encoding. Third, the effect of STN-DBS depended on encoding type: STN-DBS increased amplitude for both encoding types, increased error during proprioception encoding, and increased velocity for both encoding types. Fourth, STN-DBS was superior to medication with respect to increasing amplitude and velocity, whereas medication was superior to STN-DBS with respect to reducing error. We discuss our findings in the context of the previous literature and consider mechanisms for the differential effects of medication and STN-DBS.

14.
Clin Neurophysiol ; 143: 145-153, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995722

RESUMO

OBJECTIVE: We examined whether previous inconsistent findings about the effect of anti-Parkinsonian medication on visually-guided saccades (VGS) were due to the use of different paradigms, which change the timing of fixation offset and target onset, or different target eccentricities. METHODS: Thirty-three participants with Parkinson's disease (PD) completed the VGS tasks OFF and ON medication, along with 13 healthy controls. Performance on 3 paradigms (gap, step, and overlap) and 2 target eccentricities was recorded. We used mixed models to determine the effect of medication, paradigm, and target eccentricity on saccade latency, gain, and peak velocity. RESULTS: First, we confirmed known paradigm effects on latency, and target eccentricity effects on gain and peak velocity in participants with PD. Second, latency was positively associated with OFF medication Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score in PD. Third, medication prolonged latency for the larger target eccentricity across the 3 paradigms, while decreasing gain and peak velocity in the step paradigm across target eccentricities. CONCLUSIONS: Medication adversely affected and was not therapeutically beneficial for VGS. Previous inconsistencies may have resulted from chosen target eccentricity. SIGNIFICANCE: The negative medication effect on VGS may be clinically significant, as many activities in daily life require oculomotor control, inhibitory control, and visually-guided shifts of attention.


Assuntos
Doença de Parkinson , Movimentos Oculares , Humanos , Movimento , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Movimentos Sacádicos
16.
Ann Neurol ; 91(3): 424-435, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34984729

RESUMO

OBJECTIVE: This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS: Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS: Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION: Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.


Assuntos
Cognição/fisiologia , Estimulação Encefálica Profunda/métodos , Glucosilceramidase/genética , Heterozigoto , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Idoso , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Testes Neuropsicológicos , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia
17.
Neuromodulation ; 25(6): 866-876, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139037

RESUMO

BACKGROUND AND OBJECTIVES: Bilateral subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson's disease (PD) can have detrimental effects on eye movement inhibitory control. To investigate this detrimental effect of bilateral STN DBS, we examined the effects of manipulating STN DBS amplitude on inhibitory control during the antisaccade task. The prosaccade error rate during the antisaccade task, that is, directional errors, was indicative of impaired inhibitory control. We hypothesized that as stimulation amplitude increased, the prosaccade error rate would increase. MATERIALS AND METHODS: Ten participants with bilateral STN DBS completed the antisaccade task on six different stimulation amplitudes (including zero amplitude) after a 12-hour overnight withdrawal from antiparkinsonian medication. RESULTS: We found that the prosaccade error rate increased as stimulation amplitude increased (p < 0.01). Additionally, prosaccade error rate increased as the modeled volume of tissue activated (VTA) and STN overlap decreased, but this relationship depended on stimulation amplitude (p = 0.04). CONCLUSIONS: Our findings suggest that higher stimulation amplitude settings can be modulatory for inhibitory control. Some individual variability in the effect of stimulation amplitude can be explained by active contact location and VTA-STN overlap. Higher stimulation amplitudes are more deleterious if the active contacts fall outside of the STN resulting in a smaller VTA-STN overlap. This is clinically significant as it can inform clinical optimization of STN DBS parameters. Further studies are needed to determine stimulation amplitude effects on other aspects of cognition and whether inhibitory control deficits on the antisaccade task result in a meaningful impact on the quality of life.


Assuntos
Estimulação Encefálica Profunda , Movimentos Oculares , Doença de Parkinson , Núcleo Subtalâmico , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Núcleo Subtalâmico/fisiologia
18.
NPJ Parkinsons Dis ; 7(1): 111, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880258

RESUMO

Olfactory dysfunction is a pre-motor symptom of Parkinson's disease (PD) that appears years prior to diagnosis and can affect quality of life in PD. Changes in microbiota community in deep nasal cavity near the olfactory bulb may trigger the olfactory bulb-mediated neuroinflammatory cascade and eventual dopamine loss in PD. To determine if the deep nasal cavity microbiota of PD is significantly altered in comparison to healthy controls, we characterized the microbiota of the deep nasal cavity using 16S rRNA gene amplicon sequencing in PD subjects and compared it to that of spousal and non-spousal healthy controls. Correlations between microbial taxa and PD symptom severity were also explored. Olfactory microbial communities of PD individuals were more similar to those of their spousal controls than to non-household controls. In direct comparison of PD and spousal controls and of PD and non-spousal controls, significantly differently abundant taxa were identified, and this included increased relative abundance of putative opportunistic-pathobiont species such as Moraxella catarrhalis. M. catarrhalis was also significantly correlated with more severe motor scores in PD subjects. This proof-of-concept study provides evidence that potential pathobionts are detected in the olfactory bulb and that a subset of changes in the PD microbiota community could be a consequence of unique environmental factors associated with PD living. We hypothesize that an altered deep nasal microbiota, characterized by a putative pro-inflammatory microbial community, could trigger neuroinflammation in PD.

19.
Front Neurol ; 12: 723476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659089

RESUMO

Introduction: Up to 27% of individuals undergoing subthalamic nucleus deep brain stimulation (STN-DBS) have a genetic form of Parkinson's disease (PD). Glucocerebrosidase (GBA) mutation carriers, compared to sporadic PD, present with a more aggressive disease, less asymmetry, and fare worse on cognitive outcomes with STN-DBS. Evaluating STN intra-operative local field potentials provide the opportunity to assess and compare symmetry between GBA and non-GBA mutation carriers with PD; thus, providing insight into genotype and STN physiology, and eligibility for and programming of STN-DBS. The purpose of this pilot study was to test differences in left and right STN resting state beta power in non-GBA and GBA mutation carriers with PD. Materials and Methods: STN (left and right) resting state local field potentials were recorded intraoperatively from 4 GBA and 5 non-GBA patients with PD while off medication. Peak beta power expressed as a ratio to total beta power (peak beta ratio) was compared between STN hemispheres and groups while co-varying for age, age of disease onset, and disease severity. Results: Peak beta ratio was significantly different between the left and the right STN for the GBA group (p < 0.01) but not the non-GBA group (p = 0.56) after co-varying for age, age of disease onset, and disease severity. Discussion: Peak beta ratio in GBA mutation carriers was more asymmetric compared with non-mutation carriers and this corresponded with the degree of clinical asymmetry as measured by rating scales. This finding suggests that GBA mutation carriers have a physiologic signature that is distinct from that found in sporadic PD.

20.
Oper Neurosurg (Hagerstown) ; 20(4): 419-425, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428767

RESUMO

BACKGROUND: Segmented deep brain stimulation (DBS) leads, which are capable of steering current in the direction of any 1 of 3 segments, can result in a wider therapeutic window by directing current away from unintended structures, particularly, the corticospinal tract (CST). It is unclear whether the use of motor evoked potentials (MEPs) is feasible during DBS surgery via stimulation of individual contacts/segments in order to quantify CST activation thresholds and optimal contacts/segments intraoperatively. OBJECTIVE: To assess the feasibility of using MEP to identify CST thresholds for ring and individual segments of the DBS lead under general anesthesia. METHODS: MEP testing was performed during pulse generator implantation under general anesthesia on subjects who underwent DBS lead implantation into the subthalamic nucleus (STN). Stimulation of each ring and segmented contacts of the directional DBS lead was performed until CST threshold was reached. Stereotactic coordinates and thresholds for each contact/segment were recorded along with the initially activated muscle group. RESULTS: A total of 34 hemispheres were included for analysis. MEP thresholds were recorded from 268 total contacts/segments. For segmented contacts (2 and 3, respectively), the mean highest CST thresholds were 2.33 and 2.62 mA, while the mean lowest CST thresholds were 1.7 and 1.89 mA, suggesting differential thresholds in relation to CST. First dorsal interosseous and abductor pollicis brevis (34% each) were the most commonly activated muscle groups. CONCLUSION: MEP threshold recording from segmented DBS leads is feasible. MEP recordings can identify segments with highest CST thresholds and may identify segment orientation in relation to CST.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Potencial Evocado Motor , Estudos de Viabilidade , Humanos , Doença de Parkinson/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA